-
Comput Methods Programs Biomed · Sep 2021
ReviewA review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work.
- Omar H Salman, Zahraa Taha, Muntadher Q Alsabah, Yaseein S Hussein, Ahmed S Mohammed, and Mohammed Aal-Nouman.
- Network Department, Faculty of Engineering, AL Iraqia University, Baghdad, Iraq. Electronic address: omarwsn@gmail.com.
- Comput Methods Programs Biomed. 2021 Sep 1; 209: 106357.
BackgroundWith the remarkable increasing in the numbers of patients, the triaging and prioritizing patients into multi-emergency level is required to accommodate all the patients, save more lives, and manage the medical resources effectively. Triaging and prioritizing patients becomes particularly challenging especially for the patients who are far from hospital and use telemedicine system. To this end, the researchers exploiting the useful tool of machine learning to address this challenge. Hence, carrying out an intensive investigation and in-depth study in the field of using machine learning in E-triage and patient priority are essential and required.ObjectivesThis research aims to (1) provide a literature review and an in-depth study on the roles of machine learning in the fields of electronic emergency triage (E-triage) and prioritize patients for fast healthcare services in telemedicine applications. (2) highlight the effectiveness of machine learning methods in terms of algorithms, medical input data, output results, and machine learning goals in remote healthcare telemedicine systems. (3) present the relationship between machine learning goals and the electronic triage processes specifically on the: triage levels, medical features for input, outcome results as outputs, and the relevant diseases. (4), the outcomes of our analyses are subjected to organize and propose a cross-over taxonomy between machine learning algorithms and telemedicine structure. (5) present lists of motivations, open research challenges and recommendations for future intelligent work for both academic and industrial sectors in telemedicine and remote healthcare applications.MethodsAn intensive research is carried out by reviewing all articles related to the field of E-triage and remote priority systems that utilise machine learning algorithms and sensors. We have searched all related keywords to investigate the databases of Science Direct, IEEE Xplore, Web of Science, PubMed, and Medline for the articles, which have been published from January 2012 up to date.ResultsA new crossover matching between machine learning methods and telemedicine taxonomy is proposed. The crossover-taxonomy is developed in this study to identify the relationship between machine learning algorithm and the equivalent telemedicine categories whereas the machine learning algorithm has been utilized. The impact of utilizing machine learning is composed in proposing the telemedicine architecture based on synchronous (real-time/ online) and asynchronous (store-and-forward / offline) structure. In addition to that, list of machine learning algorithms, list of the performance metrics, list of inputs data and outputs results are presented. Moreover, open research challenges, the benefits of utilizing machine learning and the recommendations for new research opportunities that need to be addressed for the synergistic integration of multidisciplinary works are organized and presented accordingly.DiscussionThe state-of-the-art studies on the E-triage and priority systems that utilise machine learning algorithms in telemedicine architecture are discussed. This approach allows the researchers to understand the modernisation of healthcare systems and the efficient use of artificial intelligence and machine learning. In particular, the growing worldwide population and various chronic diseases such as heart chronic diseases, blood pressure and diabetes, require smart health monitoring systems in E-triage and priority systems, in which machine learning algorithms could be greatly beneficial.ConclusionsAlthough research directions on E-triage and priority systems that use machine learning algorithms in telemedicine vary, they are equally essential and should be considered. Hence, we provide a comprehensive review to emphasise the advantages of the existing research in multidisciplinary works of artificial intelligence, machine learning and healthcare services.Copyright © 2021 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.