• Frontiers in physiology · Jan 2020

    Antinociceptive Effects of Lipid Raft Disruptors, a Novel Carboxamido-Steroid and Methyl β-Cyclodextrin, in Mice by Inhibiting Transient Receptor Potential Vanilloid 1 and Ankyrin 1 Channel Activation.

    • Ádám Horváth, Tünde Biró-Sütő, Boglárka Kántás, Maja Payrits, Rita Skoda-Földes, Eszter Szánti-Pintér, Zsuzsanna Helyes, and Éva Szőke.
    • Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary.
    • Front Physiol. 2020 Jan 1; 11: 559109.

    AbstractTransient Receptor Potential Vanilloid 1 and Ankyrin 1 (TRPV1, TRPA1) cation channels are expressed in nociceptive primary sensory neurons, and play an integrative role in pain processing and inflammatory functions. Lipid rafts are liquid-ordered plasma membrane microdomains rich in cholesterol, sphingomyelin, and gangliosides. We earlier proved that lipid raft disintegration by cholesterol depletion using a novel carboxamido-steroid compound (C1) and methyl β-cyclodextrin (MCD) significantly and concentration-dependently inhibit TRPV1 and TRPA1 activation in primary sensory neurons and receptor-expressing cell lines. Here we investigated the effects of C1 compared to MCD in mouse pain models of different mechanisms. Both C1 and MCD significantly decreased the number of the TRPV1 activation (capsaicin)-induced nocifensive eye-wiping movements in the first hour by 45% and 32%, respectively, and C1 also in the second hour by 26%. Furthermore, C1 significantly decreased the TRPV1 stimulation (resiniferatoxin)-evoked mechanical hyperalgesia involving central sensitization processes, while its inhibitory effect on thermal allodynia was not statistically significant. In contrast, MCD did not affect these resiniferatoxin-evoked nocifensive responses. Both C1 and MCD had inhibitory action on TRPA1 activation (formalin)-induced acute nocifensive reactions (paw liftings, lickings, holdings, and shakings) in the second, neurogenic inflammatory phase by 36% and 51%, respectively. These are the first in vivo data showing that our novel lipid raft disruptor carboxamido-steroid compound exerts antinociceptive and antihyperalgesic effects by inhibiting TRPV1 and TRPA1 ion channel activation similarly to MCD, but in 150-fold lower concentrations. It is concluded that C1 is a useful experimental tool to investigate the effects of cholesterol depletion in animal models, and it also might open novel analgesic drug developmental perspectives.Copyright © 2020 Horváth, Biró-Sütő, Kántás, Payrits, Skoda-Földes, Szánti-Pintér, Helyes and Szőke.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.