-
The Lancet. Microbe · Nov 2020
Assessing a novel, lab-free, point-of-care test for SARS-CoV-2 (CovidNudge): a diagnostic accuracy study.
- Malick M Gibani, Christofer Toumazou, Mohammadreza Sohbati, Rashmita Sahoo, Maria Karvela, Tsz-Kin Hon, Sara De Mateo, Alison Burdett, K Y Felice Leung, Jake Barnett, Arman Orbeladze, Song Luan, Stavros Pournias, Jiayang Sun, Barney Flower, Judith Bedzo-Nutakor, Maisarah Amran, Rachael Quinlan, Keira Skolimowska, Carolina Herrera, Aileen Rowan, Anjna Badhan, Robert Klaber, Gary Davies, David Muir, Paul Randell, Derrick Crook, Graham P Taylor, Wendy Barclay, Nabeela Mughal, MooreLuke S PLSPDepartment of Infectious Disease, Imperial College London, UK.Imperial College Healthcare NHS Trust, Hammersmith Hospital, UK.Chelsea & Westminster NHS Foundation Trust, London, UK., Katie Jeffery, and Graham S Cooke.
- Department of Infectious Disease, Imperial College London, UK.
- Lancet Microbe. 2020 Nov 1; 1 (7): e300-e307.
BackgroundAccess to rapid diagnosis is key to the control and management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Laboratory RT-PCR testing is the current standard of care but usually requires a centralised laboratory and significant infrastructure. We describe our diagnostic accuracy assessment of a novel, rapid point-of-care real time RT-PCR CovidNudge test, which requires no laboratory handling or sample pre-processing.MethodsBetween April and May, 2020, we obtained two nasopharyngeal swab samples from individuals in three hospitals in London and Oxford (UK). Samples were collected from three groups: self-referred health-care workers with suspected COVID-19; patients attending emergency departments with suspected COVID-19; and hospital inpatient admissions with or without suspected COVID-19. For the CovidNudge test, nasopharyngeal swabs were inserted directly into a cartridge which contains all reagents and components required for RT-PCR reactions, including multiple technical replicates of seven SARS-CoV-2 gene targets (rdrp1, rdrp2, e-gene, n-gene, n1, n2 and n3) and human ribonuclease P (RNaseP) as sample adequacy control. Swab samples were tested in parallel using the CovidNudge platform, and with standard laboratory RT-PCR using swabs in viral transport medium for processing in a central laboratory. The primary analysis was to compare the sensitivity and specificity of the point-of-care CovidNudge test with laboratory-based testing.FindingsWe obtained 386 paired samples: 280 (73%) from self-referred health-care workers, 15 (4%) from patients in the emergency department, and 91 (23%) hospital inpatient admissions. Of the 386 paired samples, 67 tested positive on the CovidNudge point-of-care platform and 71 with standard laboratory RT-PCR. The overall sensitivity of the point-of-care test compared with laboratory-based testing was 94% (95% CI 86-98) with an overall specificity of 100% (99-100). The sensitivity of the test varied by group (self-referred healthcare workers 94% [95% CI 85-98]; patients in the emergency department 100% [48-100]; and hospital inpatient admissions 100% [29-100]). Specificity was consistent between groups (self-referred health-care workers 100% [95% CI 98-100]; patients in the emergency department 100% [69-100]; and hospital inpatient admissions 100% [96-100]). Point of care testing performance was similar during a period of high background prevalence of laboratory positive tests (25% [95% 20-31] in April, 2020) and low prevalence (3% [95% 1-9] in inpatient screening). Amplification of viral nucleocapsid (n1, n2, and n3) and envelope protein gene (e-gene) were most sensitive for detection of spiked SARS-CoV-2 RNA.InterpretationThe CovidNudge platform was a sensitive, specific, and rapid point of care test for the presence of SARS-CoV-2 without laboratory handling or sample pre-processing. The device, which has been implemented in UK hospitals since May, 2020, could enable rapid decisions for clinical care and testing programmes.FundingNational Institute of Health Research (NIHR) Imperial Biomedical Research Centre, NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Oxford University in partnership with Public Health England, NIHR Biomedical Research Centre Oxford, and DnaNudge.© 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.