• Am. J. Respir. Crit. Care Med. · Jan 2022

    Development of A Blood-Based Transcriptional Risk Score for Chronic Obstructive Pulmonary Disease.

    • Matthew Moll, Adel Boueiz, Auyon J Ghosh, Aabida Saferali, Sool Lee, Zhonghui Xu, Jeong H Yun, Brian D Hobbs, Craig P Hersh, Don D Sin, Ruth Tal-Singer, Edwin K Silverman, Michael H Cho, Peter J Castaldi, and HAPIN Investigators.
    • Channing Division of Network Medicine.
    • Am. J. Respir. Crit. Care Med. 2022 Jan 15; 205 (2): 161170161-170.

    AbstractRationale: The ability of peripheral blood biomarkers to assess chronic obstructive pulmonary disease (COPD) risk and progression is unknown. Genetics and gene expression may capture important aspects of COPD-related biology that predict disease activity. Objectives: Develop a transcriptional risk score (TRS) for COPD and assess the contribution of the TRS and a polygenic risk score (PRS) for disease susceptibility and progression. Methods: We randomly split 2,569 COPDGene (Genetic Epidemiology of COPD) participants with whole-blood RNA sequencing into training (n = 1,945) and testing (n = 624) samples and used 468 ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points) COPD cases with microarray data for replication. We developed a TRS using penalized regression (least absolute shrinkage and selection operator) to model FEV1/FVC and studied the predictive value of TRS for COPD (Global Initiative for Chronic Obstructive Lung Disease 2-4), prospective FEV1 change (ml/yr), and additional COPD-related traits. We adjusted for potential confounders, including age and smoking. We evaluated the predictive performance of the TRS in the context of a previously derived PRS and clinical factors. Measurements and Main Results: The TRS included 147 transcripts and was associated with COPD (odds ratio, 3.3; 95% confidence interval [CI], 2.4-4.5; P < 0.001), FEV1 change (β, -17 ml/yr; 95% CI, -28 to -6.6; P = 0.002), and other COPD-related traits. In ECLIPSE cases, we replicated the association with FEV1 change (β, -8.2; 95% CI, -15 to -1; P = 0.025) and the majority of other COPD-related traits. Models including PRS, TRS, and clinical factors were more predictive of COPD (area under the receiver operator characteristic curve, 0.84) and annualized FEV1 change compared with models with one risk score or clinical factors alone. Conclusions: Blood transcriptomics can improve prediction of COPD and lung function decline when added to a PRS and clinical risk factors.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.