-
- Masataka Nishimura and Wen-Jie Song.
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 8608556, Japan. Electronic address: nishimjp@kumamoto-u.ac.jp.
- Neuroscience. 2022 Jan 1; 480: 229-245.
AbstractSpectrotemporal integration is a key function of our auditory system for discriminating spectrotemporally complex sounds, such as words. Response latency in the auditory cortex is known to change with the millisecond time-scale depending on acoustic parameters, such as sound frequency and intensity. The functional significance of the millisecond-range latency difference in the integration remains unclear. Actually, whether the auditory cortex has a sensitivity to the millisecond-range difference has not been systematically examined. Herein, we examined the sensitivity in the primary auditory cortex (A1) using voltage-sensitive dye imaging techniques in guinea pigs. Bandpass noise bursts in two different bands (band-noises), centered at 1 and 16 kHz, respectively, were used for the examination. Onset times of individual band-noises (spectral onset-times) were varied to virtually cancel or magnify the latency difference observed with the band-noises. Conventionally defined nonlinear effects in integration were analyzed at A1 with varying sound intensities (or response latencies) and/or spectral onset-times of the two band-noises. The nonlinear effect measured in the high-frequency region of the A1 linearly changed depending on the millisecond difference of the response onset-times, which were estimated from the spatially-local response latencies and spectral onset-times. In contrast, the low-frequency region of the A1 had no significant sensitivity to the millisecond difference. The millisecond-range latency difference may have functional significance in the spectrotemporal integration with the millisecond time-scale sensitivity at the high-frequency region of A1 but not at the low-frequency region.Copyright © 2021 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.