• IEEE J Biomed Health Inform · Oct 2020

    Efficient and Effective Training of COVID-19 Classification Networks With Self-Supervised Dual-Track Learning to Rank.

    • Yuexiang Li, Dong Wei, Jiawei Chen, Shilei Cao, Hongyu Zhou, Yanchun Zhu, Jianrong Wu, Lan Lan, Wenbo Sun, Tianyi Qian, Kai Ma, Haibo Xu, and Yefeng Zheng.
    • IEEE J Biomed Health Inform. 2020 Oct 1; 24 (10): 2787-2797.

    AbstractCoronavirus Disease 2019 (COVID-19) has rapidly spread worldwide since first reported. Timely diagnosis of COVID-19 is crucial both for disease control and patient care. Non-contrast thoracic computed tomography (CT) has been identified as an effective tool for the diagnosis, yet the disease outbreak has placed tremendous pressure on radiologists for reading the exams and may potentially lead to fatigue-related mis-diagnosis. Reliable automatic classification algorithms can be really helpful; however, they usually require a considerable number of COVID-19 cases for training, which is difficult to acquire in a timely manner. Meanwhile, how to effectively utilize the existing archive of non-COVID-19 data (the negative samples) in the presence of severe class imbalance is another challenge. In addition, the sudden disease outbreak necessitates fast algorithm development. In this work, we propose a novel approach for effective and efficient training of COVID-19 classification networks using a small number of COVID-19 CT exams and an archive of negative samples. Concretely, a novel self-supervised learning method is proposed to extract features from the COVID-19 and negative samples. Then, two kinds of soft-labels ('difficulty' and 'diversity') are generated for the negative samples by computing the earth mover's distances between the features of the negative and COVID-19 samples, from which data 'values' of the negative samples can be assessed. A pre-set number of negative samples are selected accordingly and fed to the neural network for training. Experimental results show that our approach can achieve superior performance using about half of the negative samples, substantially reducing model training time.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.