IEEE journal of biomedical and health informatics
-
IEEE J Biomed Health Inform · May 2021
Electronic Stethoscope Filtering Mimics the Perceived Sound Characteristics of Acoustic Stethoscope.
Electronic stethoscopes offer several advantages over conventional acoustic stethoscopes, including noise reduction, increased amplification, and ability to store and transmit sounds. However, the acoustical characteristics of electronic and acoustic stethoscopes can differ significantly, introducing a barrier for clinicians to transition to electronic stethoscopes. This work proposes a method to process lung sounds recorded by an electronic stethoscope, such that the sounds are perceived to have been captured by an acoustic stethoscope. ⋯ Participants were asked to detect when transitions occurred in sounds comprising several sections of the three types of recordings. Transitions between the filtered electronic and acoustic stethoscope sections were detected, on average, by chance (sensitivity index equal to zero) and also detected significantly less than transitions between the unfiltered electronic and acoustic stethoscope sections ( ), demonstrating the effectiveness of the method to filter electronic stethoscopes to mimic an acoustic stethoscope. This processing could incentivize clinicians to adopt electronic stethoscopes by providing a means to shift between the sound characteristics of acoustic and electronic stethoscopes in a single device, allowing for a faster transition to new technology and greater appreciation for the electronic sound quality.
-
IEEE J Biomed Health Inform · Apr 2021
Effective Brain State Estimation During Propofol-Induced Sedation Using Advanced EEG Microstate Spectral Analysis.
Brain states are patterns of neuronal synchrony, and the electroencephalogram (EEG) microstate provides a promising tool to characterize and analyze the synchronous neural firing. However, the topographical spectral information for each predominate microstate is still unclear during the switch of consciousness, such as sedation, and the practical usage of the EEG microstate is worth probing. Also, the mechanism behind the anesthetic-induced alternations of brain states remains poorly understood. ⋯ The changes in microstate energy also exhibited high correlations with individual behavioral data during sedation. In a nutshell, the EEG microstate spectral analysis is an effective method to estimate brain states during propofol-induced sedation, giving great insights into the underlying mechanism. The generated spectral features can be promising markers to dynamically assess the consciousness level.
-
IEEE J Biomed Health Inform · Mar 2021
Predicting Discharge Destination of Critically Ill Patients Using Machine Learning.
Decision making about discharge destination for critically ill patients is a highly subjective and multidisciplinary process, heavily reliant on the ICU care team, patients and their caregivers' preferences, resource demand, staffing, and bed capacity. Timely identification of discharge disposition can be useful in care planning, and as a surrogate for functional status outcomes following critical illness. Although prior research has proposed methods to predict discharge destination in a critical care setting, they are limited in scope and in the generalizability of their findings. ⋯ Amongst all of the tested models, XGBoost provided the best discrimination performance with an area under the receiver operating characteristic curve of 90% (recall: 71%, F1: 70%). Our findings indicate that the variables used in the APACHE IV model for estimating patient severity of illness are better predictors of hospital discharge destination than the APACHE IV score alone. Incorporating these models into clinical decision support systems may assist patients, caregivers, and the ICU team to begin disposition planning as early as possible during the hospitalization.
-
IEEE J Biomed Health Inform · Oct 2020
Efficient and Effective Training of COVID-19 Classification Networks With Self-Supervised Dual-Track Learning to Rank.
Coronavirus Disease 2019 (COVID-19) has rapidly spread worldwide since first reported. Timely diagnosis of COVID-19 is crucial both for disease control and patient care. Non-contrast thoracic computed tomography (CT) has been identified as an effective tool for the diagnosis, yet the disease outbreak has placed tremendous pressure on radiologists for reading the exams and may potentially lead to fatigue-related mis-diagnosis. ⋯ Then, two kinds of soft-labels ('difficulty' and 'diversity') are generated for the negative samples by computing the earth mover's distances between the features of the negative and COVID-19 samples, from which data 'values' of the negative samples can be assessed. A pre-set number of negative samples are selected accordingly and fed to the neural network for training. Experimental results show that our approach can achieve superior performance using about half of the negative samples, substantially reducing model training time.
-
IEEE J Biomed Health Inform · Oct 2020
Automatic Lung Nodule Detection Combined With Gaze Information Improves Radiologists' Screening Performance.
Early diagnosis of lung cancer via computed tomography can significantly reduce the morbidity and mortality rates associated with the pathology. However, searching lung nodules is a high complexity task, which affects the success of screening programs. Whilst computer-aided detection systems can be used as second observers, they may bias radiologists and introduce significant time overheads. ⋯ The overall detection sensitivity of the specialists was 0.67±0.07, whereas the system achieved 0.69. Combining the annotations of one radiologist with the automatic system significantly improves the detection performance to similar levels of two annotators. Filtering automatic detection candidates only for low fixation regions still significantly improves the detection sensitivity without increasing the number of false-positives.