• Methods Mol. Biol. · Jan 2018

    Review

    Bioinformatics Approaches to Predict Drug Responses from Genomic Sequencing.

    • Neel S Madhukar and Olivier Elemento.
    • Department of Physiology and Biophysics, Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, 1305 York Avenue, New York, NY, 10021, USA.
    • Methods Mol. Biol. 2018 Jan 1; 1711: 277-296.

    AbstractFulfilling the promises of precision medicine will depend on our ability to create patient-specific treatment regimens. Therefore, being able to translate genomic sequencing into predicting how a patient will respond to a given drug is critical. In this chapter, we review common bioinformatics approaches that aim to use sequencing data to predict sample-specific drug susceptibility. First, we explain the importance of customized drug regimens to the future of medical care. Second, we discuss the different public databases and community efforts that can be leveraged to develop new methods for identifying new predictive biomarkers. Third, we cover the basic methods that are currently used to identify markers or signatures of drug response, without any prior knowledge of the drug's mechanism of action. We further discuss how one can integrate knowledge about drug targets, mechanisms, and predictive markers to better estimate drug response in a diverse set of samples. We begin this section with a primer on popular methods to identify targets and mechanism of action for new small molecules. This discussion also includes a set of computational methods that incorporate other drug features, which do not relate to drug-induced genetic changes or sequencing data such as drug structures, side-effects, and efficacy profiles. Those additional drug properties can aid in gaining higher accuracy for the identification of drug target and mechanism of action. We then progress to discuss using these targets in combination with disease-specific expression patterns, known pathways, and genetic interaction networks to aid drug choice. Finally, we conclude this chapter with a general overview of machine learning methods that can integrate multiple pieces of sequencing data along with prior drug or biological knowledge to drastically improve response prediction.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.