-
Comparative Study
Weight-Bearing Cone-Beam CT Scan Assessment of Stability of Supination External Rotation Ankle Fractures in a Cadaver Model.
- Mark C Lawlor, Melissa A Kluczynski, and John M Marzo.
- 1 The Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Amherst, NY, USA.
- Foot Ankle Int. 2018 Jul 1; 39 (7): 850-857.
BackgroundThe utility of computed tomography (CT) for measuring medial clear space (MCS) for determination of the stability of supination external rotation (SER) ankle fractures and in comparison to standard radiographs is unknown. We compared MCS on gravity stress (GS) radiographs to GS and weight bearing (WB) cone-beam CT (CBCT).MethodsAn AO SER 44B3.1 ankle fracture was simulated in 10 human cadavers, also serving as controls. MCS was measured on GS radiographs, GS CBCT, and a simulated WB CBCT scan. Specimens were stable if MCS was <5 mm and unstable if MCS was ≥5 mm. Paired t tests were used to compare MCS from each imaging modality for controls versus SER injuries and stable versus unstable specimens.ResultsCompared with controls assessed by GS radiographs, MCS was greater for an SER injury when assessed by GS radiograph and GS CBCT scan within the stable group. Compared with controls assessed by GS radiographs, MCS was greater for SER injuries when assessed by GS radiograph, GS CBCT scan, and WB CBCT within the unstable group. MCS was reduced for stable versus unstable SER injuries assessed by WB CBCT.ConclusionIn a cadaveric model of SER ankle fracture, the medial clear space was statistically significantly greater for the experimental condition when assessed by gravity stress radiograph and gravity stress CBCT scan. Under weight-bearing conditions, the cone-beam CT scanner distinguished between stable and unstable ankles in the experimental condition.Clinical RelevanceThis study suggests that a WB cone-beam CT scan may be able to distinguish between stable and unstable SER ankle fractures and influence operative decision making.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.