-
- Elisabeth G D Stribos, Theerut Luangmonkong, Anna M Leliveld, Igle J de Jong, Willem J van Son, Jan-Luuk Hillebrands, Marc A Seelen, Harry van Goor, Peter Olinga, and MutsaersHenricus A MHAMDepartment of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands..
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
- Transl Res. 2016 Apr 1; 170: 8-16.e1.
AbstractChronic kidney disease is a major health concern, and experimental models bridging the gap between animal studies and clinical research are currently lacking. Here, we evaluated precision-cut kidney slices (PCKSs) as a potential model for renal disease. PCKSs were prepared from human cortical tissue obtained from tumor nephrectomies and cultured up to 96 hours. Morphology, cell viability, and metabolic functionality (ie, uridine 5'-diphospho-glucuronosyltransferase and transporter activity) were determined to assess the integrity of PCKSs. Furthermore, inflammatory and fibrosis-related gene expressions were characterized. Finally, to validate the model, renal fibrogenesis was induced using transforming growth factor β1 (TGF-β1). Preparation of PCKSs induced an inflammatory tissue response, whereas long-term incubation (96 hours) induced fibrogenesis as shown by an increased expression of collagen type 1A1 (COL1A1) and fibronectin 1 (FN1). Importantly, PCKSs remained functional for more than 48 hours as evidenced by active glucuronidation and phenolsulfonphthalein uptake. In addition, cellular diversity appeared to be maintained, yet we observed a clear loss of nephrin messenger RNA levels suggesting that our model might not be suitable to study the role of podocytes in renal pathology. Moreover, TGF-β1 exposure augmented fibrosis, as illustrated by an increased expression of multiple fibrosis markers including COL1A1, FN1, and α-smooth muscle actin. In conclusion, PCKSs maintain their renal phenotype during culture and appear to be a promising model to investigate renal diseases, for example, renal fibrosis. Moreover, the human origin of PCKSs makes this model very suitable for translational research.Copyright © 2016 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.