• Magn Reson Imaging · Jan 2020

    Visualizing the lateral habenula using susceptibility weighted imaging and quantitative susceptibility mapping.

    • Naying He, Sean K Sethi, Chencheng Zhang, Yan Li, Yongsheng Chen, Bomin Sun, Fuhua Yan, and E Mark Haacke.
    • Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
    • Magn Reson Imaging. 2020 Jan 1; 65: 55-61.

    AbstractThe habenulae consist of a pair of small nuclei which bridge the limbic forebrain and midbrain monoaminergic centers. They are implicated in major depressive disorders due to abnormal phasic response when provoked by a conditioned stimulus. The lateral habenula (Lhb) is believed to be involved in dopamine metabolism and is now a target for deep brain stimulation, a treatment which has shown promising anti-depression effects. We imaged the habenulae with susceptibility weighted imaging (SWI) and quantitative susceptibility mapping (QSM) in order to localize the lateral habenula. Fifty-six healthy controls were recruited for this study. For the quantitative assessment, we traced the structure to compute volume from magnitude images and mean susceptibility bilaterally for the habenula on QSM. Thresholding methods were used to delineate the Lhb habenula on QSM. SWI, true SWI (tSWI), and QSM data were subjectively reviewed for increased Lhb contrast. SWI, QSM, and tSWI showed bilateral signal changes in the posterior location of the habenulae relative to the anterior location, which may indicate increased putative iron content within the Lhb. This signal behavior was shown in 41/44 (93%) subjects. In summary, it is possible to localize the lateral component of the habenula using SWI and QSM at 3 T.Copyright © 2019 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.