• Mayo Clinic proceedings · Dec 2021

    Electrocardiography-Based Artificial Intelligence Algorithm Aids in Prediction of Long-term Mortality After Cardiac Surgery.

    • Abdulah A Mahayni, Zachi I Attia, Jose R Medina-Inojosa, Mohamed F A Elsisy, Peter A Noseworthy, Francisco Lopez-Jimenez, Suraj Kapa, Samuel J Asirvatham, Paul A Friedman, Juan A Crestenallo, and Mohamad Alkhouli.
    • Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN.
    • Mayo Clin. Proc. 2021 Dec 1; 96 (12): 3062-3070.

    ObjectiveTo assess whether an electrocardiography-based artificial intelligence (AI) algorithm developed to detect severe ventricular dysfunction (left ventricular ejection fraction [LVEF] of 35% or below) independently predicts long-term mortality after cardiac surgery among patients without severe ventricular dysfunction (LVEF>35%).MethodsPatients who underwent valve or coronary bypass surgery at Mayo Clinic (1993-2019) and had documented LVEF above 35% on baseline electrocardiography were included. We compared patients with an abnormal vs a normal AI-enhanced electrocardiogram (AI-ECG) screen for LVEF of 35% or below on preoperative electrocardiography. The primary end point was all-cause mortality.ResultsA total of 20,627 patients were included, of whom 17,125 (83.0%) had a normal AI-ECG screen and 3502 (17.0%) had an abnormal AI-ECG screen. Patients with an abnormal AI-ECG screen were older and had more comorbidities. Probability of survival at 5 and 10 years was 86.2% and 68.2% in patients with a normal AI-ECG screen vs 71.4% and 45.1% in those with an abnormal screen (log-rank, P<.01). In the multivariate Cox survival analysis, the abnormal AI-ECG screen was independently associated with a higher all-cause mortality overall (hazard ratio [HR], 1.31; 95% CI, 1.24 to 1.37) and in subgroups of isolated valve surgery (HR, 1.30; 95% CI, 1.18 to 1.42), isolated coronary artery bypass grafting (HR, 1.29; 95% CI, 1.20 to 1.39), and combined coronary artery bypass grafting and valve surgery (HR, 1.19; 95% CI, 1.08 to 1.32). In a subgroup analysis, the association between abnormal AI-ECG screen and mortality was consistent in patients with LVEF of 35% to 55% and among those with LVEF above 55%.ConclusionA novel electrocardiography-based AI algorithm that predicts severe ventricular dysfunction can predict long-term mortality among patients with LVEF above 35% undergoing valve and/or coronary bypass surgery.Copyright © 2021 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…