• Spine · Jan 2022

    The Impact of Radiographic Lower Limb-Spinal Length Proportion on Whole-Body Sagittal Alignment.

    • HeyHwee Weng DennisHWDDepartment of Orthopaedic Surgery, National University Health System (NUHS), Singapore., Kian Loong Melvin Tan, Eugene Tze-Chun Lau, Jordan Wei Peng Ng, Gabriel Ka-Po Liu, and Hee-Kit Wong.
    • Department of Orthopaedic Surgery, National University Health System (NUHS), Singapore.
    • Spine. 2022 Jan 1; 47 (1): E38E45E38-E45.

    Study DesignA radiographic comparative study.ObjectiveTo investigate the influence of radiographic lower limb-spinal length proportion on sagittal radiographic parameters.Summary Of Background DataAlthough lordotic realignment of the lumbar spine is a well-established surgical strategy, its ideal target has not been fully understood. The widely used pelvic incidence-lumbar lordosis discrepancy (PI-LL) method to guide lordotic restoration of the lumber spine in the standing posture, may be further refined using the novel, radiographic lower limb-spinal length proportion parameter in selected subjects.MethodsA 100 healthy subjects were imaged in the standing posture using EOS imaging to obtain whole-body lateral radiographs for the measurement of sagittal radiographic parameters. Univariate analyses were performed to compare radiographic parameters between groups with different radiographic lower limb-spinal length proportion. Multivariate analyses were performed to identify the associations between lower limb-spinal length proportions and other radiographic parameters.ResultsRegardless of lower limb-spinal length proportion (mean = 1.4), global lumbar angle (GLA) differed from spinal lordosis (SL), with the absolute means of SL and GLA larger and smaller than pelvic incidence (PI) respectively. Univariate analysis showed that patients with proportionately larger lower limb-spinal length proportion are more likely to have larger mean T1-slope, global thoracic angle (GTA), spinal kyphosis (SK), GLA, and SL. Multivariate analysis showed that a larger lower limb length-spinal length proportion is predictive of larger GLA is less than -47.69° (Odds Ratio (OR) 2.660, P = 0.026), and larger T1-slope of more than 18.84° (OR 3.695, P = 0.012).ConclusionLarger radiographic lower limb-spinal length proportion results in naturally accentuated spinal curves. These patients balance with a larger lumbar lordosis that is closer to the PI and a higher T1-slope which should be considered for spinal realignment. SL differs from GLA and should be separately assessed.Level of Evidence: 3.Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.