-
Experimental neurology · Apr 2019
EPPS treatment attenuates traumatic brain injury in mice by reducing Aβ burden and ameliorating neuronal autophagic flux.
- Angela Melinda A Anthony Jalin, Rong Jin, Min Wang, and Guohong Li.
- Department of Neurosurgery, Neuroscience Institute, Penn State Hershey Medical Center, Hershey 17033, USA. Electronic address: aanthonyjalin@pennstatehealth.psu.edu.
- Exp. Neurol. 2019 Apr 1; 314: 20-33.
AbstractBeta-amyloid (Aβ) burden and impaired neuronal autophagy contribute to secondary brain injury after traumatic brain injury (TBI). 4-(2-hydroxyethyl)-1-piperazinepropanesulphonic acid (EPPS) treatment has been reported to reduce Aβ aggregation and rescue behavioral deficits in Alzheimer's disease-like mice. Here, we investigated neuroprotective effects of EPPS in a mouse model of TBI. Mice subjected to controlled cortical impact (CCI) were treated with EPPS (120 mg/kg, orally) immediately after CCI and thereafter once daily for 3 or 7 days. We found that EPPS treatment profoundly reduced the accumulation of beta-amyloid precursor protein (β-APP) and Aβ over a widespread area detected in the pericontusional cortex, external capsule (EC), and hippocampal CA1 and CA3 at 3 days after TBI, accompanied by significant reduction in the TBI-induced diffuse axonal injury identified by increased immunoreactivity of SMI-32 (an indicator for axonal damage). We also found that EPPS treatment ameliorated the TBI-induced synaptic damage (as reflected by enhanced postsynaptic density 95, PSD-95), and impairment of autophagy flux in the neurons as reflected by reduced autophagy markers (LC3-II/LC3-I ratio and p62/SQSTM1) and increased lysosomal enzyme cathepsin D (CTSD) in neurons detected in the cortex and hippocampal CA1. As a result, EPPS treatment significantly reduced the TBI-induced early neuronal apoptosis (assessed by active caspase-3), and eventually prevented cortical tissue loss and hippocampal neuronal loss at 28 days after TBI. Additionally, we found that inhibition of autophagic flux with chloroquine by decreasing autophagosome-lysosome fusion significantly reversed the decreased expressions of neuronal p62/SQSTM1 and apoptosis by EPPS treatment. These data suggest that the neuroprotection by EPPS is, at least in part, related to improved autophagy flux. Finally, we found that EPPS treatment significantly improved the cortex-dependent motor and hippocampal-dependent cognitive deficits associated with TBI. Taken together, these findings support the further investigation of EPPS as a treatment for TBI.Copyright © 2019 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.