Experimental neurology
-
Experimental neurology · Apr 2019
EPPS treatment attenuates traumatic brain injury in mice by reducing Aβ burden and ameliorating neuronal autophagic flux.
Beta-amyloid (Aβ) burden and impaired neuronal autophagy contribute to secondary brain injury after traumatic brain injury (TBI). 4-(2-hydroxyethyl)-1-piperazinepropanesulphonic acid (EPPS) treatment has been reported to reduce Aβ aggregation and rescue behavioral deficits in Alzheimer's disease-like mice. Here, we investigated neuroprotective effects of EPPS in a mouse model of TBI. Mice subjected to controlled cortical impact (CCI) were treated with EPPS (120 mg/kg, orally) immediately after CCI and thereafter once daily for 3 or 7 days. ⋯ These data suggest that the neuroprotection by EPPS is, at least in part, related to improved autophagy flux. Finally, we found that EPPS treatment significantly improved the cortex-dependent motor and hippocampal-dependent cognitive deficits associated with TBI. Taken together, these findings support the further investigation of EPPS as a treatment for TBI.
-
Experimental neurology · Apr 2019
Long non-coding RNA AK038897 aggravates cerebral ischemia/reperfusion injury via acting as a ceRNA for miR-26a-5p to target DAPK1.
Emerging evidence has suggested a significant role of long non-coding RNAs (lncRNAs) in ischemic stroke by acting as competing endogenous RNAs (ceRNAs) for microRNAs (miRNAs) to regulate certain RNA transcripts. AK038897 is an lncRNA that was reported to be upregulated in rat brains in response to transient focal ischemia. We aimed to investigate the possible regulatory role of AK038897 in ischemic stroke. ⋯ Further, AK038897 knockdown protected against MCAO/R-induced brain injury and neurological deficits in vivo. In summary, we identified a AK038897/miR-26a-5p/DAPK1 signaling cascade as a key mechanism controlling cerebral ischemia/reperfusion injury. Pharmaceutical intervention of this cascade may provide novel therapy for ischemic insults.