• NMR in biomedicine · Jun 2016

    Optimization of 4D vessel-selective arterial spin labeling angiography using balanced steady-state free precession and vessel-encoding.

    • Thomas W Okell, Peter Schmitt, Xiaoming Bi, Michael A Chappell, Rob H N Tijssen, Fintan Sheerin, Karla L Miller, and Peter Jezzard.
    • FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
    • NMR Biomed. 2016 Jun 1; 29 (6): 776-86.

    AbstractVessel-selective dynamic angiograms provide a wealth of useful information about the anatomical and functional status of arteries, including information about collateral flow and blood supply to lesions. Conventional x-ray techniques are invasive and carry some risks to the patient, so non-invasive alternatives are desirable. Previously, non-contrast dynamic MRI angiograms based on arterial spin labeling (ASL) have been demonstrated using both spoiled gradient echo (SPGR) and balanced steady-state free precession (bSSFP) readout modules, but no direct comparison has been made, and bSSFP optimization over a long readout period has not been fully explored. In this study bSSFP and SPGR are theoretically and experimentally compared for dynamic ASL angiography. Unlike SPGR, bSSFP was found to have a very low ASL signal attenuation rate, even when a relatively large flip angle and short repetition time were used, leading to a threefold improvement in the measured signal-to-noise ratio (SNR) efficiency compared with SPGR. For vessel-selective applications, SNR efficiency can be further improved over single-artery labeling methods by using a vessel-encoded pseudo-continuous ASL (VEPCASL) approach. The combination of a VEPCASL preparation with a time-resolved bSSFP readout allowed the generation of four-dimensional (4D; time-resolved three-dimensional, 3D) vessel-selective cerebral angiograms in healthy volunteers with 59 ms temporal resolution. Good quality 4D angiograms were obtained in all subjects, providing comparable structural information to 3D time-of-flight images, as well as dynamic information and vessel selectivity, which was shown to be high. A rapid 1.5 min dynamic two-dimensional version of the sequence yielded similar image features and would be suitable for a busy clinical protocol. Preliminary experiments with bSSFP that included the extracranial vessels showed signal loss in regions of poor magnetic field homogeneity. However, for intracranial vessel-selective angiography, the proposed bSSFP VEPCASL sequence is highly SNR efficient and could provide useful information in a range of cerebrovascular diseases. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.© 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…