• AJR Am J Roentgenol · Jan 2021

    A 3D-2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI.

    • Alexander Ushinsky, Michelle Bardis, Justin Glavis-Bloom, Edward Uchio, Chanon Chantaduly, Michael Nguyentat, Daniel Chow, Peter D Chang, and Roozbeh Houshyar.
    • Department of Radiological Sciences, University of California, Irvine, CA.
    • AJR Am J Roentgenol. 2021 Jan 1; 216 (1): 111-116.

    ObjectiveProstate cancer is the most commonly diagnosed cancer in men in the United States with more than 200,000 new cases in 2018. Multiparametric MRI (mpMRI) is increasingly used for prostate cancer evaluation. Prostate organ segmentation is an essential step of surgical planning for prostate fusion biopsies. Deep learning convolutional neural networks (CNNs) are the predominant method of machine learning for medical image recognition. In this study, we describe a deep learning approach, a subset of artificial intelligence, for automatic localization and segmentation of prostates from mpMRI.Materials And MethodsThis retrospective study included patients who underwent prostate MRI and ultrasound-MRI fusion transrectal biopsy between September 2014 and December 2016. Axial T2-weighted images were manually segmented by two abdominal radiologists, which served as ground truth. These manually segmented images were used for training on a customized hybrid 3D-2D U-Net CNN architecture in a fivefold cross-validation paradigm for neural network training and validation. The Dice score, a measure of overlap between manually segmented and automatically derived segmentations, and Pearson linear correlation coefficient of prostate volume were used for statistical evaluation.ResultsThe CNN was trained on 299 MRI examinations (total number of MR images = 7774) of 287 patients. The customized hybrid 3D-2D U-Net had a mean Dice score of 0.898 (range, 0.890-0.908) and a Pearson correlation coefficient for prostate volume of 0.974.ConclusionA deep learning CNN can automatically segment the prostate organ from clinical MR images. Further studies should examine developing pattern recognition for lesion localization and quantification.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…