• Neuroscience · Jan 2006

    Stimulus-evoked release of neuropeptides is enhanced in sensory neurons from mice with a heterozygous mutation of the Nf1 gene.

    • C M Hingtgen, S L Roy, and D W Clapp.
    • Department of Neurology, Stark Neurosciences Research Institute, Indiana University School of Medicine, 950 West Walnut Street, R2-466, Indianapolis, 46202, USA. chingtge@iupui.edu
    • Neuroscience. 2006 Jan 1;137(2):637-45.

    AbstractNeurofibromatosis type I is a common autosomal dominant disease characterized by formation of multiple benign and malignant tumors. People with this disorder also experience chronic pain, which can be disabling. Neurofibrinomin, the protein product of the NF1 gene (neurofibromin gene (human)), is a guanosine triphosphate activating protein for p21(ras). Loss of NF1 results in an increase in activity of the p21(ras) transduction cascade. Because of the growing evidence suggesting involvement of downstream components of the p21(ras) transduction cascade in the sensitization of nociceptive sensory neurons, we examined the stimulus-evoked release of the neuropeptides, substance P and calcitonin gene-related peptide, from primary sensory neurons of mice with a mutation of the Nf1 gene (neurofibromin gene (mouse)) (Nf1+/-). Measuring immunoreactive substance P and immunoreactive calcitonin gene-related peptide by radioimmunoassay, we demonstrated that capsaicin-stimulated release of neuropeptides is three to five-fold higher in spinal cord slices from Nf1+/- mice than from wildtype mouse tissue. In addition, the potassium and capsaicin-stimulated release of immunoreactive calcitonin gene-related peptide from cultures of sensory neurons isolated from Nf1+/- mice was more than double that from cultures of wildtype neurons. Treatment of wildtype sensory neurons with nerve growth factor for 5-7 days mimicked the enhanced stimulus-evoked release observed from the Nf1+/- neurons. When nerve growth factor was removed 48 h before conducting release experiments, nerve growth factor-induced augmentation of immunoreactive calcitonin gene-related peptide release from Nf1+/- neurons was more pronounced than in Nf1+/- sensory neurons that were treated with nerve growth factor continuously for 5-7 days. Thus, sensory neurons from mice with a heterozygous mutation of the Nf1 gene that is analogous to the human disease neurofibromatosis type I, exhibit increased sensitivity to chemical stimulation. This augmented responsiveness may explain the abnormal pain sensations experienced by people with neurofibromatosis type I and suggests an important role for guanosine triphosphate activating proteins, in the regulation of nociceptive sensory neuron sensitization.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.