• Medicina · Jan 2022

    Case Reports

    A Histological Evaluation of Artificial Dermal Scaffold Used in Micrograft Treatment: A Case Study of Micrograft and NPWT Performed on a Postoperative Ulcer Formation after Tumor Resection.

    • Yuta Niimi, Kyoko Baba, Masako Tsuchida, and Akira Takeda.
    • Department of Plastic Surgery, Kitasato University Medical Center, Saitama 364-8501, Japan.
    • Medicina (Kaunas). 2022 Jan 4; 58 (1).

    AbstractBackground and Objectives: Wound healing (WH) is a complex natural process: the achieving of a proper WH with standard therapies sometimes is not fulfilled and it is often observed in aged and diabetic patients, leading to intractable ulcers. In recent years, autologous micrograft (AMG) therapies have become a new, effective, and affordable wound care strategy among both researchers and clinicians. In this study, a 72-year-old female patient underwent a combination of treatments using micrograft and negative pressure wound therapy (NPWT) on a postoperative skin ulcer after a benign tumor resection on the back with the aim to present an innovative method to treat skin ulceration using AMG combined with an artificial dermal scaffold and NPWT. Materials and Methods: A section of the artificial dermal scaffold, infused with micrografts, was sampled prior to transplant, and sections were collected postoperatively on days 3 and 7. Hematoxylin-eosin (HE) and immunohistochemical stains were employed for the evaluation of Cytokeratin AE1/AE3, desmin, and Factor VIII. Additionally, on postoperative day 3, NPWT dressing was evaluated using HE stains, as well. The resulting HE and immunostaining analysis revealed red blood cells and tissue fragments within the collagen layers of the artificial dermis prior to transplant. On postoperative day 3, collagen layers of the artificial dermis revealed red blood cells and neutrophils based on HE stains, and scattering of cytokeratin AE1/AE3-positive cells were detected by immunostaining. The HE stains on postoperative day 7 showed more red blood cells and neutrophils within the collagen layers of the artificial dermis than on day 3, an increase in cytokeratin AE1/AE3-positive cells, and tissue stained positively with desmin and Factor VIII. Results: Results suggest that the effects of both micrografts and migratory cells have likely accelerated the wound healing process. Furthermore, the NPWT dressing on day 3 showed almost no cells within the dressing. This indicated that restarting NPWT therapy immediately after micrograft transplant did not draw out cells within the scaffold. Conclusions: Micrograft treatment and NPWT may serve to be a useful combination therapy for complex processes of wound healing.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.