• Critical care medicine · Feb 2022

    Optimal Cerebral Perfusion Pressure During Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage.

    • Miriam Weiss, Walid Albanna, Catharina Conzen, Murad Megjhani, Jeanette Tas, Katharina Seyfried, Nick Kastenholz, Michael Veldeman, Tobias Philip Schmidt, Henna Schulze-Steinen, Martin Wiesmann, Hans Clusmann, Soojin Park, Marcel Aries, and Gerrit Alexander Schubert.
    • Department of Neurosurgery, RWTH Aachen University, Aachen, Germany.
    • Crit. Care Med. 2022 Feb 1; 50 (2): 183-191.

    ObjectivesThe recommendation of induced hypertension for delayed cerebral ischemia treatment after aneurysmal subarachnoid hemorrhage has been challenged recently and ideal pressure targets are missing. A new concept advocates an individual cerebral perfusion pressure where cerebral autoregulation functions best to ensure optimal global perfusion. We characterized optimal cerebral perfusion pressure at time of delayed cerebral ischemia and tested the conformity of induced hypertension with this target value.DesignRetrospective analysis of prospectively collected data.SettingUniversity hospital neurocritical care unit.PatientsThirty-nine aneurysmal subarachnoid hemorrhage patients with invasive neuromonitoring (20 with delayed cerebral ischemia, 19 without delayed cerebral ischemia).InterventionsInduced hypertension greater than 180 mm Hg systolic blood pressure.Measurements And Main ResultsChangepoint analysis was used to calculate significant changes in cerebral perfusion pressure, optimal cerebral perfusion pressure, and the difference of cerebral perfusion pressure and optimal cerebral perfusion pressure 48 hours before delayed cerebral ischemia diagnosis. Optimal cerebral perfusion pressure increased 30 hours before the onset of delayed cerebral ischemia from 82.8 ± 12.5 to 86.3 ± 11.4 mm Hg (p < 0.05). Three hours before delayed cerebral ischemia, a changepoint was also found in the difference of cerebral perfusion pressure and optimal cerebral perfusion pressure (decrease from -0.2 ± 11.2 to -7.7 ± 7.6 mm Hg; p < 0.05) with a corresponding increase in pressure reactivity index (0.09 ± 0.33 to 0.19 ± 0.37; p < 0.05). Cerebral perfusion pressure at time of delayed cerebral ischemia was lower than in patients without delayed cerebral ischemia in a comparable time frame (cerebral perfusion pressure delayed cerebral ischemia 81.4 ± 8.3 mm Hg, no delayed cerebral ischemia 90.4 ± 10.5 mm Hg; p < 0.05). Inducing hypertension resulted in a cerebral perfusion pressure above optimal cerebral perfusion pressure (+12.4 ± 8.3 mm Hg; p < 0.0001). Treatment response (improvement of delayed cerebral ischemia: induced hypertension+ [n = 15] or progression of delayed cerebral ischemia: induced hypertension- [n = 5]) did not correlate to either absolute values of cerebral perfusion pressure or optimal cerebral perfusion pressure, nor the resulting difference (cerebral perfusion pressure [p = 0.69]; optimal cerebral perfusion pressure [p = 0.97]; and the difference of cerebral perfusion pressure and optimal cerebral perfusion pressure [p = 0.51]).ConclusionsAt the time of delayed cerebral ischemia occurrence, there is a significant discrepancy between cerebral perfusion pressure and optimal cerebral perfusion pressure with worsening of autoregulation, implying inadequate but identifiable individual perfusion. Standardized induction of hypertension resulted in cerebral perfusion pressures that exceeded individual optimal cerebral perfusion pressure in delayed cerebral ischemia patients. The potential benefit of individual blood pressure management guided by autoregulation-based optimal cerebral perfusion pressure should be explored in future intervention studies.Copyright © 2022 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.