-
- V I Chefer and T S Shippenberg.
- Integrative Neuroscience Unit, Behavioral Neuroscience Laboratory, NIH/NIDA Intramural Research Program, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA. vchefer@intra.nida.nih.gov
- Neuroscience. 2002 Jan 1; 112 (4): 907-19.
AbstractDespite an abundance of studies on mechanisms of behavioral sensitization, considerable uncertainty exists as to whether alterations in dopamine neurotransmission underlie the exacerbated behavioral effects of cocaine observed during the early stages of abstinence. One of the factors contributing to the uncertainty and controversy may be the limitations in utilized measurement techniques (mostly conventional microdialysis). The techniques of quantitative microdialysis under transient conditions and rotating disk electrode voltammetry were used to characterize basal dopamine dynamics as well as time-related changes in extracellular dopamine concentrations and dopamine uptake that occur in response to an acute drug challenge in control animals and animals with previous history of cocaine. Basal extracellular dopamine concentrations were unaltered on abstinence day 3 from repeated cocaine administration (5 days, 20 mg/kg, i.p.). The extraction fraction of dopamine, an indirect measure of dopamine uptake, was significantly lower in cocaine-sensitized animals relative to controls. These two facts, taken together, suggest that basal dopamine release is depressed in cocaine-sensitized animals on abstinence day 3. At the same time, a cocaine challenge decreased the extraction fraction and increased the extracellular dopamine concentration in both experimental groups. The magnitude of the increase in extracellular dopamine concentration was greater in cocaine-sensitized animals, while the ability of cocaine to decrease the extraction fraction was unaltered, suggesting that the increase in extracellular dopamine concentration reflects an increase in drug-evoked dopamine release. Moreover, cocaine-pretreated rats demonstrated greater depolarization-induced dopamine release and the ability of dopamine D(2) receptor agonist, quinpirole, to inhibit release was decreased in these animals. These data demonstrate that a cocaine treatment regimen resulting in behavioral sensitization is associated with a reduction in basal dopamine release, an enhancement in both cocaine and K(+)-evoked dopamine release, and a subsensitivity of dopamine D(2) autoreceptors that regulate dopamine release in the nucleus accumbens.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.