• Eur Spine J · Aug 2022

    Spinopelvic measurements of sagittal balance with deep learning: systematic review and critical evaluation.

    • Tomaž Vrtovec and Bulat Ibragimov.
    • Laboratory of Imaging Technologies, Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000, Ljubljana, Slovenia. tomaz.vrtovec@fe.uni-lj.si.
    • Eur Spine J. 2022 Aug 1; 31 (8): 203120452031-2045.

    PurposeTo summarize and critically evaluate the existing studies for spinopelvic measurements of sagittal balance that are based on deep learning (DL).MethodsThree databases (PubMed, WoS and Scopus) were queried for records using keywords related to DL and measurement of sagittal balance. After screening the resulting 529 records that were augmented with specific web search, 34 studies published between 2017 and 2022 were included in the final review, and evaluated from the perspective of the observed sagittal spinopelvic parameters, properties of spine image datasets, applied DL methodology and resulting measurement performance.ResultsStudies reported DL measurement of up to 18 different spinopelvic parameters, but the actual number depended on the image field of view. Image datasets were composed of lateral lumbar spine and whole spine X-rays, biplanar whole spine X-rays and lumbar spine magnetic resonance cross sections, and were increasing in size or enriched by augmentation techniques. Spinopelvic parameter measurement was approached either by landmark detection or structure segmentation, and U-Net was the most frequently applied DL architecture. The latest DL methods achieved excellent performance in terms of mean absolute error against reference manual measurements (~ 2° or ~ 1 mm).ConclusionAlthough the application of relatively complex DL architectures resulted in an improved measurement accuracy of sagittal spinopelvic parameters, future methods should focus on multi-institution and multi-observer analyses as well as uncertainty estimation and error handling implementations for integration into the clinical workflow. Further advances will enhance the predictive analytics of DL methods for spinopelvic parameter measurement.Level Of Evidence IDiagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.