• Chinese medical journal · Oct 2018

    Blast-Induced Traumatic Brain Injury Triggered by Moderate Intensity Shock Wave Using a Modified Experimental Model of Injury in Mice.

    • Yuan Zhou, Li-Li Wen, Han-Dong Wang, Xiao-Ming Zhou, Jiang Fang, Jian-Hong Zhu, and Ke Ding.
    • Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing 210002, China.
    • Chin. Med. J. 2018 Oct 20; 131 (20): 2447-2460.

    BackgroundThe increasing frequency of explosive injuries has increased interest in blast-induced traumatic brain injury (bTBI). Various shock tube models have been used to study bTBI. Mild-to-moderate explosions are often overlooked because of the slow onset or mildness of the symptoms. However, heavy gas cylinders and large volume chambers in the model may increase the complexity and danger. This study sought to design a modified model to explore the effect of moderate explosion on brain injury in mice.MethodsPathology scoring system (PSS) was used to distinguish the graded intensity by the modified model. A total of 160 mice were randomly divided into control, sham, and bTBI groups with different time points. The clinical features, imaging features, neurobehavior, and neuropathology were detected after moderate explosion. One-way analysis of variance followed by Fisher's least significant difference posttest or Dunnett's t 3-test was performed for data analyses.ResultsPSS of mild, moderate, and severe explosion was 13.4 ± 2.2, 32.6 ± 2.7 (t = 13.92, P < 0.001; vs. mild group), and 56.6 ± 2.8 (t = 31.37, P < 0.001; vs. mild group), respectively. After moderate explosion, mice showed varied symptoms of malaise, anorexia, incontinence, apnea, or seizure. After bTBI, brain edema reached the highest peak at day 3 (82.5% ± 2.1% vs. 73.8% ± 0.6%, t = 7.76, P < 0.001), while the most serious neurological outcomes occurred at day 1 (Y-maze: 8.25 ± 2.36 vs. 20.00 ± 4.55, t = -4.59, P = 0.048; 29.58% ± 2.84% vs. 49.09% ± 11.63%, t = -3.08, P = 0.008; neurologic severity score: 2.50 ± 0.58 vs. 0.00 ± 0.00, t = 8.65, P = 0.016). We also found that apoptotic neurons (52.76% ± 1.99% vs. 1.30% ± 0.11%, t = 57.20, P < 0.001) and gliosis (2.98 ± 0.24 vs. 1.00 ± 0.00, t = 14.42, P = 0.021) in the frontal were significantly higher at day 3 post-bTBI than sham bTBI.ConclusionsWe provide a reliable, reproducible bTBI model in mice that can produce a graded explosive waveform similar to the free-field shock wave in a controlled laboratory environment. Moderate explosion can trigger mild-to-moderate blast damage of the brain.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.