• Tohoku J. Exp. Med. · Apr 2022

    Observational Study

    Influence of Respiratory Gas Density on Tidal Volume during Mechanical Ventilation: A Laboratory Investigation and Observational Study in Children.

    • Kazuhiro Takahashi, Hiroaki Toyama, Yutaro Funahashi, Shin Kawana, Yutaka Ejima, Kenji Kikuchi, Takuji Ishikawa, and Masanori Yamauchi.
    • Department of Anesthesiology and Perioperative Medicine, Tohoku University Graduate School of Medicine.
    • Tohoku J. Exp. Med. 2022 Apr 19; 256 (4): 271-281.

    AbstractFluid mechanics show that high-density gases need more energy while flowing through a tube. Thus, high-density anesthetic gases consume more energy to flow and less energy for lung inflation during general anesthesia. However, its impact has not been studied. Therefore, this study aimed to investigate the effects of high-density anesthetic gases on tidal volume in laboratory and clinical settings. In the laboratory study, a test lung was ventilated at the same pressure-controlled ventilation with 22 different gas compositions (density range, 1.22-2.27 kg/m3) using an anesthesia machine. A pneumotachometer was used to record the tidal volume of the test lung and the respiratory gas composition; it showed that the tidal volume of the test lung decreased as the respiratory gas density increased. In the clinical study, the change in tidal volume per body weight, accompanied by gas composition change (2% sevoflurane in oxygen and with 0-30-60% of N2O), was recorded in 30 pediatric patients. The median tidal volume per body weight decreased by 10% when the respiratory gas density increased from 1.41 kg/m3 to 1.70 kg/m3, indicating a significant between-group difference (P < 0.0001). In both settings, an increase in respiratory gas density decreased the tidal volume during pressure-controlled ventilation, which could be explained by the fluid dynamics theory. This study clarified the detailed mechanism of high-density anesthetic gas reduced the tidal volume during mechanical ventilation and revealed that this phenomenon occurs during pediatric anesthesia, which facilitates further understanding of the mechanics of ventilation during anesthesia practice and respiratory physiology.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.