• Mayo Clinic proceedings · Aug 2022

    Prediction of Mortality in Coronary Artery Disease: Role of Machine Learning and Maximal Exercise Capacity.

    • Christina G de Souza E Silva, Gabriel C Buginga, Edmundo A de Souza E Silva, Ross Arena, Codie R Rouleau, Sandeep Aggarwal, Stephen B Wilton, Leslie Austford, Trina Hauer, and Jonathan Myers.
    • Exercise Medicine Clinic (CLINIMEX), Rio de Janeiro, Brazil. Electronic address: christina.g.dss@gmail.com.
    • Mayo Clin. Proc. 2022 Aug 1; 97 (8): 1472-1482.

    ObjectiveTo develop a prediction model for survival of patients with coronary artery disease (CAD) using health conditions beyond cardiovascular risk factors, including maximal exercise capacity, through the application of machine learning (ML) techniques.MethodsAnalysis of data from a retrospective cohort linking clinical, administrative, and vital status databases from 1995 to 2016 was performed. Inclusion criteria were age 18 years or older, diagnosis of CAD, referral to a cardiac rehabilitation program, and available baseline exercise test results. Primary outcome was death from any cause. Feature selection was performed using supervised and unsupervised ML techniques. The final prognostic model used the survival tree (ST) algorithm.ResultsFrom the cohort of 13,362 patients (60±11 years; 2400 [18%] women), 1577 died during a median follow-up of 8 years (interquartile range, 4 to 13 years), with an estimated survival of 67% up to 21 years. Feature selection revealed age and peak metabolic equivalents (METs) as the features with the greatest importance for mortality prediction. Using these 2 features, the ST generated a long-term prediction with a C-index of 0.729 by splitting patients in 8 clusters with different survival probabilities (P<.001). The ST root node was split by peak METs of 6.15 or less or more than 6.15, and each patient's subgroup was further split by age or other peak METs cut points.ConclusionApplying ML techniques, age and maximal exercise capacity accurately predict mortality in patients with CAD and outperform variables commonly used for decision-making in clinical practice. A novel and simple prognostic model was established, and maximal exercise capacity was further suggested to be one of the most powerful predictors of mortality in CAD.Copyright © 2022 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.