• Transl Res · Oct 2022

    RBD-mRNA vaccine induces broadly neutralizing antibodies against Omicron and multiple other variants and protects mice from SARS-CoV-2 challenge.

    • Juan Shi, Jian Zheng, Xiujuan Zhang, Wanbo Tai, Abby E Odle, Stanley Perlman, and Lanying Du.
    • Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia; Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York.
    • Transl Res. 2022 Oct 1; 248: 112111-21.

    AbstractMultiple SARS-CoV-2 variants are identified with higher rates of transmissibility or greater disease severity. Particularly, recent emergence of Omicron variant with rapid human-to-human transmission posts new challenges to the current prevention strategies. In this study, following vaccination with an mRNA vaccine encoding SARS-CoV-2 receptor-binding domain (RBD-mRNA), we detected serum antibodies that neutralized pseudoviruses expressing spike (S) protein harboring single or multiple mutations, as well as authentic SARS-CoV-2 variants, and evaluated its protection against SARS-CoV-2 infection. The vaccine induced durable antibodies that potently neutralized prototypic strain and B.1.1.7 lineage variant pseudoviruses containing N501Y or D614G mutations alone or in combination with a N439K mutation (B.1.258 lineage), with a L452R mutation (B.1.427 or B.1.429 lineage), or a L452R-E484Q double mutation (B.1.617.1 variant), although neutralizing activity against B.1.1.7 lineage variant containing 10 amino acid changes in the S protein was slightly reduced. The RBD-mRNA-induced antibodies exerted moderate neutralization against authentic B.1.617.2 and B.1.1.529 variants, and pseudotyped B.1.351 and P.1 lineage variants containing K417N/T, E484K, and N501Y mutations, the B.1.617.2 lineage variant harboring L452R, T478K, and P681R mutations, and the B.1.1.529 lineage variant containing 38 mutations in the S protein. Particularly, RBD-mRNA vaccine completely protected mice from challenge with a virulent mouse-adapted SARS-CoV-2 variant. Among these lineages, B.1.1.7, B.1.351, P.1, B.1.617.2, and B.1.1.529 belong to Alpha, Beta, Gamma, Delta, and Omicron variants, respectively. Our observations reveal that RBD-mRNA vaccine is promising and highlights the need to design novel vaccines with improved neutralization against current and future pandemic SARS-CoV-2 variants.Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.