• Neuroscience · Apr 1994

    Cholinergic mechanisms in canine narcolepsy--I. Modulation of cataplexy via local drug administration into the pontine reticular formation.

    • M S Reid, M Tafti, J N Geary, S Nishino, J M Siegel, W C Dement, and E Mignot.
    • Stanford University Sleep Disorders Research Center, Palo Alto, CA 94304.
    • Neuroscience. 1994 Apr 1; 59 (3): 511522511-22.

    AbstractCataplexy in the narcoleptic canine has been shown to increase after systemic administration of cholinergic agonists. Furthermore, the number of cholinergic receptors in the pontine reticular formation of narcoleptic canines is significantly elevated. In the present study we have investigated the effects of cholinergic drugs administered directly into the pontine reticular formation on cataplexy, as defined by brief episodes of hypotonia induced by emotions, in narcoleptic canines. Carbachol and atropine were perfused through microdialysis probes implanted bilaterally in the pontine reticular formation of freely moving, narcoleptic and control Doberman pinschers. Cataplexy was quantified using the Food-Elicited Cataplexy Test, and analysed using recordings of electroencephalogram, electrooculogram and electromyogram. Cataplexy was characterized by a desynchronized electroencephalogram and a drop in electromyogram and electrooculogram activity. In narcoleptic canines, both unilateral and bilateral carbachol (10(-5) to 10(-3) M) produced a dose-dependent increase in cataplexy, which resulted in complete muscle tone suppression at the highest concentration. In control canines, neither bilateral nor unilateral carbachol (10(-5) to 10(-3) M) produced cataplexy, although bilateral carbachol, did produce muscle atonia at the highest dose (10(-3)). The increase in cataplexy after bilateral carbachol (10(-4) M) was rapidly reversed when the perfusion medium was switched to one containing atropine (10(-4) M). Bilateral atropine (10(-3) to 10(-2) M) alone did not produce any significant effects on cataplexy in narcoleptic canines; however, bilateral atropine (10(-2) M) did reduce the increase in cataplexy produced by systemic administration of physostigmine (0.05 mg/kg, i.v.). These findings demonstrate that cataplexy in narcoleptic canines can be stimulated by applying cholinergic agonists directly into the pontine reticular formation. The ability of atropine to inhibit locally and systemically stimulated cataplexy indicates that the pontine reticular formation is a critical component in cholinergic stimulation of cataplexy. Therefore, it is suggested that the pontine reticular formation plays a significant role in the cholinergic regulation of narcolepsy.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.