• Mayo Clinic proceedings · May 2022

    Artificial Intelligence-Enabled Electrocardiogram for Atrial Fibrillation Identifies Cognitive Decline Risk and Cerebral Infarcts.

    • Erika L Weil, Peter A Noseworthy, Camden L Lopez, Alejandro A Rabinstein, Paul A Friedman, Zachi I Attia, Xiaoxi Yao, Konstantinos C Siontis, Walter K Kremers, Georgios Christopoulos, Michelle M Mielke, Prashanthi Vemuri, Clifford R Jack, Bernard J Gersh, Mary M Machulda, David S Knopman, Ronald C Petersen, and Jonathan Graff-Radford.
    • Department of Neurology, Mayo Clinic, Rochester, MN, USA.
    • Mayo Clin. Proc. 2022 May 1; 97 (5): 871880871-880.

    ObjectiveTo investigate whether artificial intelligence-enabled electrocardiogram (AI-ECG) assessment of atrial fibrillation (AF) risk predicts cognitive decline and cerebral infarcts.Patients And MethodsThis population-based study included sinus-rhythm ECG participants seen from November 29, 2004 through July 13, 2020, and a subset with brain magnetic resonance imaging (MRI) (October 10, 2011, through November 2, 2017). The AI-ECG score of AF risk calculated for participants was 0-1. To determine the AI-ECG-AF relationship with baseline cognitive dysfunction, we compared linear mixed-effects models with global and domain-specific cognitive z-scores from longitudinal neuropsychological assessments. The AI-ECG-AF score was logit transformed and modeled with cubic splines. For the brain-MRI subset, logistic regression evaluated correlation of the AI-ECG-AF score and the high-threshold, dichotomized AI-ECG-AF score with infarcts.ResultsParticipants (N=3729; median age, 74.1 years) underwent cognitive analysis. Adjusting for age, sex, education, and APOE ɛ4-carrier status, the AI-ECG-AF score correlated with lower baseline and faster decline in global-cognitive z-scores (P=.009 and P=.01, respectively, non-linear-based spline-models tests) and attention z-scores (P<.001 and P=.01, respectively). Sinus-rhythm-ECG participants (n=1373) underwent MRI. As a continuous measure, the AI-ECG-AF score correlated with infarcts but not after age and sex adjustment (P=.52). For dichotomized analysis, an AI-ECG-AF score greater than 0.5 correlated with infarcts (OR, 4.61; 95% CI, 2.45-8.55; P<.001); even after age and sex adjustment (OR, 2.09; 95% CI, 1.06-4.07; P=.03).ConclusionThe AI-ECG-AF score correlated with worse baseline cognition and gradual global cognition and attention decline. High AF probability by AI-ECG-AF score correlated with MRI cerebral infarcts. However, most infarcts observed in our cohort were subcortical, suggesting that AI-ECG not only predicts AF but also detects other non-AF cardiac disease markers and correlates with small vessel cerebrovascular disease and cognitive decline.Copyright © 2022 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.