• Int. J. Clin. Pract. · Jan 2022

    Review Meta Analysis

    Diagnostic Accuracy of Wireless Capsule Endoscopy in Polyp Recognition Using Deep Learning: A Meta-Analysis.

    • Junjie Mi, Xiaofang Han, Rong Wang, Ruijun Ma, and Danyu Zhao.
    • Digestive Endoscopy Center, Shanxi Provincial People's Hospital, Taiyuan, China.
    • Int. J. Clin. Pract. 2022 Jan 1; 2022: 9338139.

    AimAs the completed studies have small sample sizes and different algorithms, a meta-analysis was conducted to assess the accuracy of WCE in identifying polyps using deep learning.MethodTwo independent reviewers searched PubMed, Embase, the Web of Science, and the Cochrane Library for potentially eligible studies published up to December 8, 2021, which were analysed on a per-image basis. STATA RevMan and Meta-DiSc were used to conduct this meta-analysis. A random effects model was used, and a subgroup and regression analysis was performed to explore sources of heterogeneity.ResultsEight studies published between 2017 and 2021 included 819 patients, and 18,414 frames were eventually included in the meta-analysis. The summary estimates for the WCE in identifying polyps by deep learning were sensitivity 0.97 (95% confidence interval (CI), 0.95-0.98); specificity 0.97 (95% CI, 0.94-0.98); positive likelihood ratio 27.19 (95% CI, 15.32-50.42); negative likelihood ratio 0.03 (95% CI 0.02-0.05); diagnostic odds ratio 873.69 (95% CI, 387.34-1970.74); and the area under the sROC curve 0.99.ConclusionWCE uses deep learning to identify polyps with high accuracy, but multicentre prospective randomized controlled studies are needed in the future.Copyright © 2022 Junjie Mi et al.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.