-
Int. J. Clin. Pract. · Jan 2022
Prognostic Prediction Using the Clinical Data and Ultrasomics-Based Model in Acute Respiratory Distress Syndrome (ARDS) Combined with Acute Kidney Injury (AKI).
- Xing Cai, Jing Li, Ping Qin, Peng An, Hao Yang, MingYan Zuo, and Jinsong Wang.
- Department of Respiratory Medicine, Xiangyang Hospital of Traditional Chinese Medicine, Xiangyang Central Hospital, Xiangyang, Hubei 441000, China.
- Int. J. Clin. Pract. 2022 Jan 1; 2022: 4822337.
ObjectiveA model was constructed based on clinical and ultrasomics features to predict the prognosis of patients in the respiratory intensive unit (RICU) who had acute respiratory distress syndrome (ARDS) combined with acute kidney injury (AKI). AKI ensues after ARDS in RICU ordinarily. The prognostic prediction tool was further developed on this basis.MethodsWe collected clinical and ultrasonic data from 145 patients who had ARDS combined with AKI and received continuous renal replacement therapy (CRRT) in the RICU of Xiangyang Hospital of Traditional Chinese Medicine from March 2016 to November 2019. The patients were divided into the survival group (n = 51) and the death group (n = 94), depending on the treatment outcome. The training set (n = 102) and the testing set (n = 43) were established based on patient data. The clinical and ultrasomics features and the CRRT parameters were compared between the two groups. The influence factors of death were analyzed by logistic regression, and four predictive models were established. The predictive performance of 4 models was compared using the R Software 4.1.3. The decision curve analysis graphs were drawn using the R language to determine the net benefit of each.ResultUnivariate analysis was conducted in the training set. The following risk factors for poor prognosis were identified: age, concurrent cancers, sequential organ failure assessment score (SOFA), number of organ dysfunctions, positive cumulative fluid balance at 72 h, time from ICU admission to CRRT, mean arterial pressure, oxygenation index, and gray-level size zone matrix, GLSZM (SumEntropy.239/SmallDependenceHighGrayLevelEmphasis.314/Maximum.327/Variance.338) (P < 0.05). Four models were built based on the above factors: clinical model, CRRT model, ultrasomics-based model, and combination model. Comparison using the MedCalc software indicated that the best predictive performance achieved with the combination model. The decision curve analysis also suggested that the combination model had the highest net benefit. Similar results were reported after validation on the testing set.ConclusionThe prognosis of ARDS patients combined with AKI is usually poor. The combination model based on clinical and ultrasomics features had the highest predictive performance. This model can be used to improve the clinical outcome and prognosis.Copyright © 2022 Xing Cai et al.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.