• Spine · Jun 2022

    Effects of Radiation on the Bone Strength of Spinal Vertebrae in Rats.

    • Takashi Igarashi, Satoru Demura, Satoshi Kato, Kazuya Shinmura, Noriaki Yokogawa, Noritaka Yonezawa, Takaki Shimizu, Norihiro Oku, Hideki Murakami, and Hiroyuki Tsuchiya.
    • From the Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan.
    • Spine. 2022 Jun 15; 47 (12): E514-E520.

    Study DesignA controlled laboratory study.ObjectiveThe aim of this study was to examine bone damage caused by irradiation to spinal vertebrae in rats.Summary Of Background DataRadiotherapy is widely used in the treatment of malignant spine tumors. However, a few studies have reported vertebral fractures following radiotherapy as an adverse reaction. There are no reports on irradiation- induced changes in bone fragility, mechanical and structural changes focusing on the spine, and the mechanism of irradiation-induced bone osteoporosis.MethodsEighty-four female Wistar rats were randomly allocated to the 20 Gy irradiated or the nonirradiated (control) group. The lumbar vertebrae were irradiated with an external focal radiation dose of 20 Gy. Biomechanical, structural, and histological analyses were performed at 0, 2, 4, 6, 8, 12, and 24 weeks after irradiation. Structural analysis and bone density measurement of vertebral trabecular bone were performed by μCT. Histopathological evaluation was performed by hematoxylin and eosin staining and immunostaining.ResultsThe bone strength at 2 weeks after irradiation (311 ± 23 N) was 22% lower than that before irradiation (398 ± 34 N) (P  < 0.05). The trabecular spacing increased, and trabecular connectivity and width decreased significantly in the irradiated group compared with those in the non-irradiated group. The three-dimensional structure model became coarse, and the trabecular structure continued to thin and disrupt after irradiation. There was no significant change in the bone mineral density in both groups.ConclusionA decrease in bone strength was observed 2 weeks after irradiation. Bone mineral density remained unaltered, whereas the microstructure of trabecular bone changed, suggesting bone damage by irradiation.Level of Evidence: N/A.Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.