• Resuscitation · Sep 2022

    Predicting neurological outcomes after in-hospital cardiac arrests for patients with Coronavirus Disease 2019.

    • Anoop Mayampurath, Fereshteh Bashiri, Raffi Hagopian, Laura Venable, Kyle Carey, Dana Edelson, Matthew Churpek, and American Heart Association's Get With The Guidelines®-Resuscitation Investigators.
    • Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, WI, United States; Department of Medicine, University of Wisconsin, Madison, WI, United States.
    • Resuscitation. 2022 Sep 1; 178: 556255-62.

    BackgroundMachine learning models are more accurate than standard tools for predicting neurological outcomes in patients resuscitated after cardiac arrest. However, their accuracy in patients with Coronavirus Disease 2019 (COVID-19) is unknown. Therefore, we compared their performance in a cohort of cardiac arrest patients with COVID-19.MethodsWe conducted a retrospective analysis of resuscitation survivors in the Get With The Guidelines®-Resuscitation (GWTG-R) COVID-19 registry between February 2020 and May 2021. The primary outcome was a favorable neurological outcome, indicated by a discharge Cerebral Performance Category score ≤ 2. Pre- and peri-arrest variables were used as predictors. We applied our published logistic regression, neural network, and gradient boosted machine models developed in patients without COVID-19 to the COVID-19 cohort. We also updated the neural network model using transfer learning. Performance was compared between models and the Cardiac Arrest Survival Post-Resuscitation In-Hospital (CASPRI) score.ResultsAmong the 4,125 patients with COVID-19 included in the analysis, 484 (12 %) patients survived with favorable neurological outcomes. The gradient boosted machine, trained on non-COVID-19 patients was the best performing model for predicting neurological outcomes in COVID-19 patients, significantly better than the CASPRI score (c-statistic: 0.75 vs 0.67, P < 0.001). While calibration improved for the neural network with transfer learning, it did not surpass the gradient boosted machine in terms of discrimination.ConclusionOur gradient boosted machine model developed in non-COVID patients had high discrimination and adequate calibration in COVID-19 resuscitation survivors and may provide clinicians with important information for these patients.Copyright © 2022 Elsevier B.V. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.