-
- Anoop Mayampurath, Fereshteh Bashiri, Raffi Hagopian, Laura Venable, Kyle Carey, Dana Edelson, Matthew Churpek, and American Heart Association's Get With The Guidelines®-Resuscitation Investigators.
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, WI, United States; Department of Medicine, University of Wisconsin, Madison, WI, United States.
- Resuscitation. 2022 Sep 1; 178: 556255-62.
BackgroundMachine learning models are more accurate than standard tools for predicting neurological outcomes in patients resuscitated after cardiac arrest. However, their accuracy in patients with Coronavirus Disease 2019 (COVID-19) is unknown. Therefore, we compared their performance in a cohort of cardiac arrest patients with COVID-19.MethodsWe conducted a retrospective analysis of resuscitation survivors in the Get With The Guidelines®-Resuscitation (GWTG-R) COVID-19 registry between February 2020 and May 2021. The primary outcome was a favorable neurological outcome, indicated by a discharge Cerebral Performance Category score ≤ 2. Pre- and peri-arrest variables were used as predictors. We applied our published logistic regression, neural network, and gradient boosted machine models developed in patients without COVID-19 to the COVID-19 cohort. We also updated the neural network model using transfer learning. Performance was compared between models and the Cardiac Arrest Survival Post-Resuscitation In-Hospital (CASPRI) score.ResultsAmong the 4,125 patients with COVID-19 included in the analysis, 484 (12 %) patients survived with favorable neurological outcomes. The gradient boosted machine, trained on non-COVID-19 patients was the best performing model for predicting neurological outcomes in COVID-19 patients, significantly better than the CASPRI score (c-statistic: 0.75 vs 0.67, P < 0.001). While calibration improved for the neural network with transfer learning, it did not surpass the gradient boosted machine in terms of discrimination.ConclusionOur gradient boosted machine model developed in non-COVID patients had high discrimination and adequate calibration in COVID-19 resuscitation survivors and may provide clinicians with important information for these patients.Copyright © 2022 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.