• Medicine · Aug 2022

    Comparison of prediction accuracies between two mathematical models for the assessment of COVID-19 damage at the early stage and throughout 2020.

    • Hua-Ying Chuang, Tsair-Wei Chien, Willy Chou, Chen-Yu Wang, and Kang-Ting Tsai.
    • Department of Nursing, Chung Hwa University of Medical Technology, Tainan 717, Taiwan.
    • Medicine (Baltimore). 2022 Aug 12; 101 (32): e29718e29718.

    BackgroundThe negative impacts of COVID-19 (ImpactCOVID) on public health are commonly assessed using the cumulative numbers of confirmed cases (CNCCs). However, whether different mathematical models yield disparate results based on varying time frames remains unclear. This study aimed to compare the differences in prediction accuracy between 2 proposed COVID-19 models, develop an angle index that can be objectively used to evaluate ImpactCOVID, compare the differences in angle indexes across countries/regions worldwide, and examine the difference in determining the inflection point (IP) on the CNCCs between the 2 models.MethodsData were downloaded from the GitHub website. Two mathematical models were examined in 2 time-frame scenarios during the COVID-19 pandemic (the early 20-day stage and the entire year of 2020). Angle index was determined by the ratio (=CNCCs at IP÷IP days). The R2 model and mean absolute percentage error (MAPE) were used to evaluate the model's prediction accuracy in the 2 time-frame scenarios. Comparisons were made using 3 visualizations: line-chart plots, choropleth maps, and forest plots.ResultsExponential growth (EXPO) and item response theory (IRT) models had identical prediction power at the earlier outbreak stage. The IRT model had a higher model R2 and smaller MAPE than the EXPO model in 2020. Hubei Province in China had the highest angle index at the early stage, and India, California (US), and the United Kingdom had the highest angle indexes in 2020. The IRT model was superior to the EXPO model in determining the IP on an Ogive curve.ConclusionBoth proposed models can be used to measure ImpactCOVID. However, the IRT model (superior to EXPO in the long-term and Ogive-type data) is recommended for epidemiologists and policymakers to measure ImpactCOVID in the future.Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…