• Medicine · Aug 2022

    Deciphering the molecular mechanism underlying the effects of epimedium on osteoporosis through system bioinformatic approach.

    • Keliang Wu, Linjing Han, Ying Zhao, Qinghua Xiao, Zhen Zhang, and Xiaosheng Lin.
    • The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong Province, China.
    • Medicine (Baltimore). 2022 Aug 12; 101 (32): e29844e29844.

    AbstractEpimedium has gained widespread clinical application in Traditional Chinese Medicine, with the functions of promoting bone reproduction, regulating cell cycle and inhibiting osteoclastic activity. However, its precise cellular pharmacological therapeutic mechanism on osteoporosis (OP) remains elusive. This study aims to elucidate the molecular mechanism of epimedium in the treatment of OP based on system bioinformatic approach. Predicted targets of epimedium were collected from TCMSP, BATMAN-TCM and ETCM databases. Differentially expressed mRNAs of OP patients were obtained from Gene Expression Omnibus database by performing Limma package of R software. Epimedium-OP common targets were obtained by Venn diagram package for further analysis. The protein-protein interaction network was constructed using Cytoscape software. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out by using clusterProfiler package. Molecular docking analysis was conducted by AutoDock 4.2 software to validate the binding affinity between epimedium and top 3 proteins based on the result of protein-protein interaction. A total of 241 unique identified epimedium targets were screened from databases, of which 62 overlapped with the targets of OP and were considered potential therapeutic targets. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that these targets were positive regulation of cell cycle, cellular response to oxidative stress and positive regulation of cell cycle process as well as cellular senescence, FoxO, PI3K-Akt, and NF-kappa B signaling pathways. Molecular docking showed that epimedium have a good binding activity with key targets. Our study demonstrated the multitarget and multi-pathway characteristics of epimedium on OP, which elucidates the potential mechanisms of epimedium against OP and provides theoretical basis for further drug development.Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…