• Bone · May 2010

    Low-magnitude high-frequency vibration treatment augments fracture healing in ovariectomy-induced osteoporotic bone.

    • Hong-Fei Shi, Wing-Hoi Cheung, Ling Qin, Andraay Hon-Chi Leung, and Kwok-Sui Leung.
    • Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
    • Bone. 2010 May 1;46(5):1299-305.

    AbstractFracture healing is impaired in osteoporotic bone. Low-magnitude high-frequency vibration (LMHFV) has recently been proven to be osteogenic in osteoporotic intact bone. Our previous study found that LMHFV significantly enhanced fracture healing in adult rats. This study was designed to explore whether LMHFV was able to promote fracture healing in osteoporotic bone by enhancing callus formation, remodeling, and mineralization and to compare with age-matched nonosteoporotic ones. Nine-month-old ovariectomy (OVX)-induced osteoporotic rats were randomized into control (OVX-C) or vibration group (OVX-V); age-matched sham-operated rats were assigned into control (Sham-C) or vibration group (Sham-V). LMHFV (35 Hz, 0.3 g) was given 20 min/day and 5days/week to the treatment groups, while sham treatment was given to the control groups. Weekly radiographs and endpoint micro-CT, histomorphometry, and mechanical properties were evaluated at 2, 4, and 8 weeks post-treatment. Results confirmed that the fracture healing in OVX-C was significantly inferior to that in Sham-C. LMHFV was shown to be effective in promoting the fracture healing in OVX group in all measured parameters, particularly in the early phases of healing, with the outcomes comparable to that of age-matched normal fracture healing. Callus formation, mineralization and remodeling were enhanced by 25-30%, with a 70% increase in energy to failure than OVX-C. However, Sham-V was found to have lesser fracture healing enhancement, with significant increase in callus area only on week 2 and 3 than Sham-C, suggesting non-OVX aged bones were less sensitive to mechanical loading. The findings of this study provide a good basis to suggest that proceeding to clinical trials is the next step to evaluate the efficacy of LMHFV on osteoporotic fracture healing.Copyright (c) 2009 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.