• Medicine · Aug 2022

    A network pharmacology approach to identify the mechanisms and molecular targets of curcumin against Alzheimer disease.

    • Xinyan Wu, Xiaomei Zheng, Huaqiao Tang, Ling Zhao, Changliang He, Yuanfeng Zou, Xu Song, Lixia Li, Zhongqiong Yin, and Gang Ye.
    • College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, China.
    • Medicine (Baltimore). 2022 Aug 26; 101 (34): e30194.

    BackgroundAlzheimer disease (AD) is a degenerative brain disease, which may lead to severe memory loss and other cognitive disorders. However, few effective drugs are available in the clinic at present. Curcumin, a major ingredient of traditional Chinese medicine, Curcuma Longa, has various pharmacological activities. Therefore, exploring clinical drugs based on the inhibition of AD pathological features is imperative.MethodsFirst, we utilized the HERB database and Swisstarget Prediction database to get the related targets of curcumin and intersected with the AD targets. The intersection targets were used to construct the protein-protein interaction network and performed gene ontology and kyoto encyclopedia of genes and genomes analyses. Further, we obtained targets of curcumin against AD-related tau and aβ pathology via the AlzData database. These targets were applied to perform GEO and receiver operating characteristic analyses. Finally, the reliability of the core targets was evaluated using molecular docking technology.ResultsWe identified 49 targets of curcumin against AD, and kyoto encyclopedia of genes and genomes pathway enrichment analysis demonstrated that the Alzheimer disease pathway (has05010) was significantly enriched. Even more, we obtained 16 targets of curcumin-related Aβ and tau pathology. Among these targets, 8 targets involved the Alzheimer disease pathway and the biological process analyses showed that positive regulation of cytokine production (GO:0001819) was significantly enriched. Bioinformatic analyses indicated that HMOX1, CSF1R, NFKB1, GSK3B, BACE1, AR, or PTGS1 expression was significantly different compared to the control group in the AD patients. Finally, molecular docking studies suggested these genes have a good binding force with curcumin.ConclusionsIn this study, we identified curcumin exerted the effect of treating AD by regulating multitargets and multichannels through the method of network pharmacology.Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.