-
- Xiaoping Zhang, Gang Wang, Qing Wang, and Rui Jiang.
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266002, China.
- Mil Med. 2024 Jan 23; 189 (1-2): 374378374-378.
IntroductionThis was an in vivo animal study designed to investigate the interaction between dexamethasone (Dex) and microRNA-204 (miR-204) in a mouse alkali burn-induced corneal neovascularization (CNV) model. The function of miR-204 was then investigated in human mammary epithelial cells (HMECs) in vitro.Materials And MethodsThe CNV model was induced by corneal alkali burn in BLAB/c mice. The mice were randomly divided into five groups: normal control (Ctrl), alkali burn-induced corneal injury (Alkali), alkali burn + Dex (Dex), alkali burn + negative control (NTC), and alkali burn + miR-204 agomir (miR-204). Subconjunctival injection of NTC, Dex, or miR-204 agomir was conducted at 0, 3, and 6 days, respectively, after alkali burn. The corneas were collected at day 7 after injury, and the CNV area was observed using immunofluorescence staining. The expression of miR-204 was analyzed with quantitative real time (qRT)-PCR. In HMECs, exogenous miR-204 agomir or antagomir was used to strengthen or inhibit the expression of miR-204. Migration assays and tube formation studies were conducted to evaluate the function of miR-204 on HMECs.ResultsAt 7 days post-alkali burn, CNV grew aggressively into the cornea. MicroRNA-204 expression was reduced in the Alkali group in contrast with the Ctrl group (P = .003). However, miR-204 was upregulated in the Dex group (vs. alkali group, P = .008). The CNV areas in the NTC and miR-204 groups were 59.30 ± 8.32% and 25.60 ± 2.30%, respectively (P = .002). In vitro, miR-204 agomir showed obvious inhibition on HMEC migration in contrast with NTC (P = .033) and miR-204 antagomir (P = .017). Compared with NTC, miR-204 agomir attenuated tube formation, while miR-204 antagomir accelerated HMEC tube formation (P < .05).ConclusionThe role of Dex in attenuating CNV may be partly attributed to miR-204. MiR-204 may be a potential therapeutic target in alkali burn-induced CNV.© The Association of Military Surgeons of the United States 2022. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.