• Intern Emerg Med · Jan 2023

    A comparison of machine learning algorithms in predicting COVID-19 prognostics.

    • Serpil Ustebay, Abdurrahman Sarmis, Gulsum Kubra Kaya, and Mark Sujan.
    • Department of Computer Engineering, Istanbul Medeniyet University, Istanbul, Turkey.
    • Intern Emerg Med. 2023 Jan 1; 18 (1): 229239229-239.

    AbstractML algorithms are used to develop prognostic and diagnostic models and so to support clinical decision-making. This study uses eight supervised ML algorithms to predict the need for intensive care, intubation, and mortality risk for COVID-19 patients. The study uses two datasets: (1) patient demographics and clinical data (n = 11,712), and (2) patient demographics, clinical data, and blood test results (n = 602) for developing the prediction models, understanding the most significant features, and comparing the performances of eight different ML algorithms. Experimental findings showed that all prognostic prediction models reported an AUROC value of over 0.92, in which extra tree and CatBoost classifiers were often outperformed (AUROC over 0.94). The findings revealed that the features of C-reactive protein, the ratio of lymphocytes, lactic acid, and serum calcium have a substantial impact on COVID-19 prognostic predictions. This study provides evidence of the value of tree-based supervised ML algorithms for predicting prognosis in health care.© 2022. The Author(s).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…