• Preventive medicine · Dec 2022

    Community implications for gun violence prevention during co-occurring pandemics; a qualitative and computational analysis study.

    • Desmond U Patton, Nathan Aguilar, Aviv Y Landau, Chris Thomas, Rachel Kagan, Tianai Ren, Eric Stoneberg, Timothy Wang, Daniel Halmos, Anish Saha, Amith Ananthram, and Kathleen McKeown.
    • School of Social Policy & Practice, Annenberg School for Communication, Department of Child and Adolescent Psychiatry and Behavioral Sciences, University of Pennsylvania, Philadelphia, USA. Electronic address: dp2787@columbia.edu.
    • Prev Med. 2022 Dec 1; 165 (Pt A): 107263107263.

    AbstractThis study provides insight into New York City residents' perceptions about violence after the outbreak of Coronavirus disease (COVID-19) based on information from communities in New York City Housing Authority (NYCHA) buildings. In this novel analysis, we used focus group and social media data to confirm or reject findings from qualitative interviews. We first used data from 69 in-depth, semi-structured interviews with low-income residents and community stakeholders to further explore how violence impacts New York City's low-income residents of color, as well as the role of city government in providing tangible support for violence prevention during co-occurring health (COVID-19) and social (anti-Black racism) pandemics. Residents described how COVID-19 and the Black Lives Matter movement impacted safety in their communities while offering direct recommendations to improve safety. Residents also shared recommendations that indirectly improve community safety by addressing long term systemic issues. As the recruitment of interviewees was concluding, researchers facilitated two focus groups with 38 interviewees to discuss similar topics. In order to assess the degree to which the themes discovered in our qualitative interviews were shared by the broader community, we developed an integrative community data science study which leveraged natural language processing and computer vision techniques to study text and images on public social media data of 12 million tweets generated by residents. We joined computational methods with qualitative analysis through a social work lens and design justice principles to most accurately and holistically analyze the community perceptions of gun violence issues and potential prevention strategies. Findings indicate valuable community-based insights that elucidate how the co-occurring pandemics impact residents' experiences of gun violence and provide important implications for gun violence prevention in a digital era.Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…