• Neuroscience · Nov 2022

    Further studies on the role of BTBD9 in the cerebellum, sleep-like behaviors and the restless legs syndrome.

    • Shangru Lyu, Hong Xing, Yuning Liu, Pallavi Girdhar, Fumiaki Yokoi, and Yuqing Li.
    • Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
    • Neuroscience. 2022 Nov 21; 505: 789078-90.

    AbstractGenetic analyses have linked BTBD9 to restless legs syndrome (RLS) and sleep regulation. Btbd9 knockout mice show RLS-like motor restlessness. Previously, we found hyperactivity of cerebellar Purkinje cells (PCs) in Btbd9 knockout mice, which may contribute to the motor restlessness observed. However, underlying mechanisms for PC hyperactivity in Btbd9 knockout mice are unknown. Here, we used dissociated PC recording, brain slice recording and western blot to address this question. Our dissociated recording shows that knockout PCs had increased TEA-sensitive, Ca2+-dependent K+ currents. Applying antagonist to large conductance Ca2+-activated K+ (BK) channels further isolated the increased current as BK current. Consistently, we found increased amplitude of afterhyperpolarization and elevated BK protein levels in the knockout mice. Dissociated recording also shows a decrease in TEA-insensitive, Ca2+-dependent K+ currents. The result is consistent with reduced amplitude of tail currents, mainly composed of small conductance Ca2+-activated K+ (SK) currents, in slice recording. Our results suggest that BK and SK channels may be responsible for the hyperactivity of knockout PCs. Recently, BTBD9 protein was shown to associate with SYNGAP1 protein. We found a decreased cerebellar level of SYNGAP1 in Btbd9 knockout mice. However, Syngap1 heterozygous knockout mice showed nocturnal, instead of diurnal, motor restlessness. Our results suggest that SYNGAP1 deficiency may not contribute directly to the RLS-like motor restlessness observed in Btbd9 knockout mice. Finally, we found that PC-specific Btbd9 knockout mice exhibited deficits in motor coordination and balance similar to Btbd9 knockout mice, suggesting that the motor effect of BTBD9 in PCs is cell-autonomous.Copyright © 2022 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.