• Neuroscience · Dec 2022

    Neural subtype-dependent cholinergic modulation of neural activities by activation of M2 receptors and GIRK in rat periaqueductal gray neurons.

    • Shiori Sugawara, Yuka Nakaya, Sachie Matsumura, Kensuke Hirose, Yasuhiko Saito, Ryosuke Kaneko, and Masayuki Kobayashi.
    • Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
    • Neuroscience. 2022 Dec 1; 506: 1131-13.

    AbstractAcetylcholine plays a pivotal role in the regulation of functions such as pain and the sleep and wake cycle by modulating neural activities of the ventrolateral periaqueductal gray (vlPAG). Electrophysiological studies have shown that cholinergic effects are inconsistent among recorded neurons, particularly in the depolarization and hyperpolarization of the resting membrane potential (RMP). This discrepancy may be due to the neural subtype-dependent cholinergic modulation of the RMP. To examine this possibility, we performed whole-cell patch-clamp recordings from subtype-identified neurons using vesicular GABA transporter (VGAT)-Venus × ChAT-TdTomato rats and elucidated cellular mechanisms of cholinergic effects on the RMP. The application of carbachol hyperpolarized the RMP of cholinergic neurons in a dose-dependent manner but had much less of an effect on other neural subtypes, including GABAergic/glycinergic and glutamatergic neurons. Cholinergic hyperpolarization was accompanied by a decrease in input resistance. These cholinergic effects were blocked by AF-DX384 or gallamine and were mimicked by arecaidine but-2-ynyl ester tosylate, suggesting that the carbachol-induced hyperpolarization of the RMP in cholinergic neurons is mediated via M2 receptors. Tertiapin suppressed the carbachol-induced G protein-activated inwardly rectifying potassium channel (GIRK) currents and hyperpolarization of the RMP in cholinergic neurons. Intracellular application of GDP-β-S blocked the carbachol-induced hyperpolarization of the RMP. Neostigmine slowly hyperpolarized the RMP in cholinergic neurons. These results suggest that neural firing of vlPAG cholinergic neurons is suppressed by GIRK currents induced via M2 receptor activation, and this negative feedback regulation of cholinergic neuronal activities can be induced by acetylcholine, which is intrinsically released in the vlPAG.Copyright © 2022 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.