-
- Victor Y Cheng, Piotr J Slomka, Ludovic Le Meunier, Balaji K Tamarappoo, Ryo Nakazato, Damini Dey, and Daniel S Berman.
- Heart Institute and Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA. chengv@gmail.com
- J. Nucl. Med. 2012 Apr 1;53(4):575-83.
UnlabelledWhether (18)F-FDG PET can detect inflammation in the coronary arteries remains controversial. We examined (18)F-FDG uptake at the culprit sites of acute myocardial infarction (AMI) after percutaneous coronary stenting (PCS) by coregistering PET and coronary CT angiography (CTA).MethodsTwenty nondiabetic patients with AMI (median age, 62 y; 16 men and 4 women) and 7 nondiabetic patients with stable coronary artery disease (CAD; median age, 67 y; 4 men and 3 women) underwent (18)F-FDG PET and coronary CTA 1-6 d after PCS of culprit stenoses. After a low-carbohydrate dietary preparation and more than 12 h of fasting, 480 MBq of (18)F-FDG were injected, and PET images were acquired 3 h later. Helical CTA was performed on a dual-source scanner. Stent position on attenuation-correction noncontrast CT and CTA was used to fuse PET and CTA. Two experienced readers masked to patient data independently quantified maximum target-to-background ratio (maxTBR) at each PCS site. A maxTBR greater than 2.0 was the criterion for significant uptake.ResultsCompared with stable CAD patients, more AMI patients exhibited a PCS site maxTBR greater than 2.0 (12/20 vs. 1/7, P = 0.04). More AMI patients were active smokers (9/20 vs. 0/7 in stable CAD, P = 0.03). After adjusting for baseline demographic differences, stent-myocardium distance, and myocardial (18)F-FDG uptake, presentation of AMI was positively associated with a PCS site maxTBR greater than 2.0 (odds ratio, 31.6; P = 0.044). Prevalence of excess myocardial (18)F-FDG uptake was similar in both populations (8/20 AMI vs. 3/7 stable CAD, P = 0.89).ConclusionSystematic fusion of (18)F-FDG PET and coronary CTA demonstrated increased culprit site (18)F-FDG uptake more commonly in patients with AMI than in patients with stable CAD. However, this approach failed to detect increased signal at the culprit site in nearly half of AMI patients, highlighting the challenging nature of in vivo coronary artery plaque metabolic imaging. Nonetheless, our findings suggest that imaging of coronary artery inflammation is feasible, and further work evaluating (18)F-FDG uptake in high-risk coronary plaques prior to rupture would be of great interest.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.