• Neuroscience · Feb 2023

    Machine Learning Identifies a Rat Model of Parkinson's Disease via Sleep-Wake Electroencephalogram.

    • Jun Lu and Siamak K Sorooshyari.
    • Stroke Center, Department of Neurology, 1st Hospital of Jilin University, Changchun 120021, China. Electronic address: lujun@jlu.edu.cn.
    • Neuroscience. 2023 Feb 1; 510: 181-8.

    AbstractAlpha-synuclein induced degeneration of the midbrain substantia nigra pars compact (SNc) dopaminergic neurons causes Parkinson's disease (PD). Rodent studies demonstrate that nigrostriatal dopamine stimulates pallidal neurons which, via the topographical pallidocortical pathway, regulate cortical activity and functions. We hypothesize that nigrostriatal dopamine acting at the basal ganglia regulates cortical activity in sleep and wake state, and its depletion systemically alters electroencephalogram (EEG) across frequencies during sleep-wake state. Compared to control rats, 6-hydroxydopamine induced selective SNc lesions increased overall EEG power (positive synchronization) across 0.5-60 Hz during wake, NREM (non-rapid eye movement) sleep, and REM sleep. Application of machine learning (ML) to seven EEG features computed at a single or combined spectral bands during sleep-wake differentiated SNc lesions from controls at high accuracy. ML algorithms construct a model based on empirical data to make predictions on subsequent data. The accuracy of the predictive results indicate that nigrostriatal dopamine depletion increases global EEG spectral synchronization in wake, NREM sleep, and REM sleep. The EEG changes can be exploited by ML to identify SNc lesions at a high accuracy.Copyright © 2022 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…