• Neuroscience · Nov 1998

    Fluoxetine induces the transcription of genes encoding c-fos, corticotropin-releasing factor and its type 1 receptor in rat brain.

    • G Torres, J M Horowitz, N Laflamme, and S Rivest.
    • Department of Psychology, State University of New York at Buffalo, 14260, USA.
    • Neuroscience. 1998 Nov 1; 87 (2): 463477463-77.

    AbstractFluoxetine is a serotonin re-uptake blocker commonly used to treat endogenous depression. The present experiments were carried out to assess the effects of fluoxetine on c-fos induction throughout the rat brain. In addition, intron-directed in situ hybridization analysis was used to examine fluoxetine regulation of corticotropin-releasing factor heteronuclear gene transcription in the paraventricular nucleus of the hypothalamus. Because the actions of corticotropin-releasing factor are mediated by membrane-bound corticotropin-releasing factor type 1 receptors, we also evaluated the stimulation of such receptors after acute fluoxetine exposure. The immediate-early gene, c-fos, was markedly induced in several telencephalic and diencephalic brain structures. For instance, a strong hybridized signal was apparent 30 min after fluoxetine (10 mg/kg; intraperitoneal) administration in the caudate putamen, septal nucleus, bed nucleus of stria terminalis, anterodorsal preoptic area, paraventricular nucleus, supraoptic nucleus, ventromedial hypothalamus and posterior hypothalamic nucleus. In addition, c-fos-expressing neurons were also evident in discrete amygdaloid nuclei. This nuclear induction was brief in duration, as levels of the immediate-early gene were mostly undetectable 90 min after drug administration. In contrast to the extensive induction of c-fos by fluoxetine throughout the brain parenchyma, elevation of corticotropin-releasing factor heteronuclear RNA levels were confined exclusively to neurosecretory nerve cells of the paraventricular nucleus, with peak levels detected 30 min after fluoxetine exposure. Therefore, the time-course of corticotropin-releasing factor heteronuclear RNA closely paralleled that of c-fos. Significant changes in corticotropin-releasing factor type 1 receptor messenger RNA levels were also observed in the paraventricular nucleus but with a slow incremental biosynthesis of the receptor messenger RNA, as high levels were discernible only 360 min after fluoxetine treatment. Finally, we failed to detect sex-related differences in the acute response to fluoxetine, as both female and male rat brains showed a comparable induction of c-fos, corticotropin-releasing factor heteronuclear RNA and corticotropin-releasing factor type 1 receptor expression within parvocellular neurosecretory nerve cells that govern the stress response. All of these findings are discussed in terms of specific sequences of nuclear events that couple fluoxetine-based serotonin input with changes in gene expression in selective neurons.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.