-
- Amaia Pérez Del Barrio, Anna Salut Esteve Domínguez, Pablo Menéndez Fernández-Miranda, Pablo Sanz Bellón, David Rodríguez González, Lara Lloret Iglesias, Enrique Marqués Fraguela, Andrés A González Mandly, and José A Vega.
- Servicio de Radiodiagnóstico, Hospital Universitario "Marqués de Valdecilla", Santander, Spain.
- J Neuroimaging. 2023 Mar 1; 33 (2): 218226218-226.
Background And PurposeIntracranial hemorrhage (ICH) is a common life-threatening condition that must be rapidly diagnosed and treated. However, there is still a lack of consensus regarding treatment, driven to some extent by prognostic uncertainty. While several prediction models for ICH detection have already been published, here we present a deep learning predictive model for ICH prognosis.MethodsWe included patients with ICH (n = 262), and we trained a custom model for the classification of patients into poor prognosis and good prognosis, using a hybrid input consisting of brain CT images and other clinical variables. We compared it with two other models, one trained with images only (I-model) and the other with tabular data only (D-model).ResultsOur hybrid model achieved an area under the receiver operating characteristic curve (AUC) of .924 (95% confidence interval [CI]: .831-.986), and an accuracy of .861 (95% CI: .760-.960). The I- and D-models achieved an AUC of .763 (95% CI: .622-.902) and .746 (95% CI: .598-.876), respectively.ConclusionsThe proposed hybrid model was able to accurately classify patients into good and poor prognosis. To the best of our knowledge, this is the first ICH prognosis prediction deep learning model. We concluded that deep learning can be applied for prognosis prediction in ICH that could have a great impact on clinical decision-making. Further, hybrid inputs could be a promising technique for deep learning in medical imaging.© 2022 The Authors. Journal of Neuroimaging published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.