• Annals of medicine · Dec 2023

    Review

    Using chronobiology-based second-generation artificial intelligence digital system for overcoming antimicrobial drug resistance in chronic infections.

    • Yotam Kolben, Henny Azmanov, Ram Gelman, Danna Dror, and Yaron Ilan.
    • Department of Medicine, Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel.
    • Ann. Med. 2023 Dec 1; 55 (1): 311318311-318.

    AbstractAntimicrobial resistance results from the widespread use of antimicrobial agents and is a significant obstacle to the effectiveness of these agents. Numerous methods are used to overcome this problem with moderate success. Besides efforts of antimicrobial stewards, several artificial intelligence (AI)-based technologies are being explored for preventing resistance development. These first-generation systems mainly focus on improving patients' adherence. Chronobiology is inherent in all biological systems. Host response to infections and pathogens activity are assumed to be affected by the circadian clock. This paper describes the problem of antimicrobial resistance and reviews some of the current AI technologies. We present the establishment of a second-generation AI chronobiology-based approach to help in preventing further resistance and possibly overcome existing resistance. An algorithm-controlled regimen that improves the long-term effectiveness of antimicrobial agents is being developed based on the implementation of variability in dosing and drug administration times. The method provides a means for ensuring a sustainable response and improved outcomes. Ongoing clinical trials determine the effectiveness of this second-generation system in chronic infections. Data from these studies are expected to shed light on a new aspect of resistance mechanisms and suggest methods for overcoming them.IMPORTANCE SECTIONThe paper presents the establishment of a second-generation AI chronobiology-based approach to help in preventing further resistance and possibly overcome existing resistance.Key messagesAntimicrobial resistance results from the widespread use of antimicrobial agents and is a significant obstacle to the effectiveness of these agents.We present the establishment of a second-generation AI chronobiology-based approach to help in preventing further resistance and possibly overcome existing resistance.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…