• Medicine · Dec 2022

    The mechanism of Bai He Gu Jin Tang against non-small cell lung cancer revealed by network pharmacology and molecular docking.

    • Rui-Fei Xie, Zi-Yu Song, Lu-Yao Xu-Shao, Jin-Ge Huang, Ting Zhao, and Zi Yang.
    • Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
    • Medicine (Baltimore). 2022 Dec 30; 101 (52): e32555e32555.

    BackgroundNon-small cell lung cancer (NSCLC) is a leading cause of cancer-related burden and deaths, thus effective treatment strategies with lower side effects for NSCLC are urgently needed. To systematically analyze the mechanism of Bai He Gu Jin Tang (BHGJT) against NSCLC by network pharmacology and molecular docking.MethodsThe active compounds of BHGJT were obtained by searching the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine and Encyclopaedia of Traditional Chinese Medicine. Search tool for interactions of chemicals was used for acquiring the targets of BHGJT. The component-target network was mapped by Cytoscape. NSCLC-related genes were obtained by searching Genecards, DrugBank and Therapeutic Target Database. The protein-protein interaction network of intersection targets was established based on Search Tool for Recurring Instances of Neighboring Genes (STRING), and further, the therapeutic core targets were selected by topological parameters. The hub targets were transmitted to Database for Annotation, Visualization and Integrated Discovery for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, AutoDock Vina and MglTools were employed for molecular docking validation.ResultsTwo hundred fifty-six compounds and 237 putative targets of BHGJT-related active compounds as well as 1721potential targets of NSCLC were retrieved. Network analysis showed that 8 active compounds of BHGJT including kaempferol, quercetin, luteolin, isorhamnetin, beta-sitosterol, stigmasterol, mairin and liquiritigenin as well as 15 hub targets such as AKR1B10 and AKR1C2 contribute to the treatment of BHGJT against NSCLC. GO functional enrichment analysis shows that BHGJT could regulate many biological processes, such as apoptotic process. Three modules of the endocrine related pathways including the inflammation, hypoxia related pathways as well as the other cancer related pathways based on Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis might explain the biological mechanisms of BHGJT in treating BHGJT. The results of molecular docking verified that AKR1B10 and AKR1C2 had the strongest binding activity with the 8 key compounds of NSCLC.ConclusionOur study reveals the mechanism of BHGJT in treating NSCLC involving multiple components, multiple targets and multiple pathways. The present study laid an initial foundation for the subsequent research and clinical application of BHGJT and its active compounds against NSCLC.Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.