• Medicine · Dec 2022

    Single leg drop jump performance identifies functional deficit in collegiate athletes who have returned to sports after ACL reconstruction: A case-control study.

    • Han Wei Lem, Shih-Chung Cheng, Hsiao-Yun Chang, Min-Hao Hung, and Wen-Ling Yeh.
    • MSc and MPE Dual Programme in International Sport Coaching Science, University of Physical Education, Budapest, Hungary.
    • Medicine (Baltimore). 2022 Dec 9; 101 (49): e31790e31790.

    AbstractDespite its apparent functional importance, there is a general lack of data in explosive strength in individuals recovering from an anterior cruciate ligament reconstruction (ACLR). Hence, we wonder if single leg drop jump (SLDJ) can be an effective testing since drop jump is a commonly used testing which rely on adequate development of explosive strength and stretch shortening cycle function. The purpose of this study was to determine if SLDJ test can identify functional deficit in collegiate athletes who have returned to sports (RTS) after ACLR when comparing it with the common return to sport testing. Nine collegiate athletes who had undergone a unilateral ACLR and returned to their primary sport with at least 10 months post-surgery were recruited and assigned into the injured group and compared with 9 matched non-injured athletes as the control group. Both groups underwent an identical battery testing in 1 session with the sequence of first modified star excursion balance test (SEBT), second single hop and bound test, third SLDJ and lastly 1 repetition maximum (1RM) single leg press. A 2-way mixed model analysis of variance showed that there is no significant interaction effect on common RTS testing which include modified SEBT, single hop and bound tests, and 1RM single leg press, but significant interaction effect on SLDJ jump height (P = .03), reactive strength index (P = .03) and mean propulsion force (P = .03). For the injured group, ACLR leg jump height (10.35 ± 2.71 cm) was significantly lower than non-ACLR leg (12.86 ± 3.51 cm) with a mean difference of 2.51 (95% confidence interval [CI]: 0.55-4.47). ACLR leg reactive strength index (0.29 ± 0.10 m/s) was significantly < non-ACLR leg (0.39 ± 0.16 m/s) with a mean difference of 0.1 (95% CI: 0.03-0.17) and ACLR leg mean propulsion force (1087.49 ± 287.26 N) was significantly < non-ACLR leg (1157.40 ± 299.80 N) with a mean difference of 69.91 (95% CI: 16.04 to 123.78). SLDJ was able to identify jump height, reactive strength and propulsion force deficit in the involved limb of collegiate athletes who have returned to sports after ACLR.Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…