• Neuroscience · Aug 2023

    Characterization of Hemodynamic Alteration in Parkinson's Disease and Effect on Resting-State Connectivity.

    • Da Zhang, Qianyi Fu, Chen Xue, Chaoyong Xiao, Yu Sun, Weiguo Liu, and Xiao Hu.
    • Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
    • Neuroscience. 2023 Aug 1; 524: 233241233-241.

    AbstractFunctional magnetic resonance imaging (fMRI) is a convolution of latent neural activity and the hemodynamic response function (HRF). According to prior studies, the neurodegenerative process in idiopathic Parkinson's Disease (PD) interacts significantly with neuromuscular abnormalities. Although these underlying neuromuscular changes might influence the temporal characteristics of HRF and fMRI signals, relatively few studies have explored this possibility. We hypothesized that such alterations would engender changes in estimated functional connectivity (FC) in fMRI space compared to latent neural space. To test these theories, we calculated voxel-level HRFs by deconvolving resting-state fMRI data from PD patients (n = 61) and healthy controls (HC) (n = 47). Significant group differences in HRF (P < 0.05, Gaussian random field-corrected) were observed in several regions previously associated with PD. Subsequently, we focused on putamen-seed-based FC differences between the PD and HC groups using fMRI and latent neural signals. The results suggested that neglecting HRF variability may cultivate false-positive and false-negative FC group differences. Furthermore, HRF was related to dopamine receptor type 2 (DRD2) gene expression (P < 0.001, t = -7.06, false discover rate-corrected). Taken together, these findings reveal HRF variation and its possible underlying molecular mechanism in PD, and suggest that deconvolution could reduce the impact of HRF variation on FC group differences.Copyright © 2023 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.